

Experimenting with Degree

Stephanie Solt¹ and Nicole Gotzner²
ILLC Amsterdam¹, ZAS Berlin¹ & Humboldt-Universität zu Berlin²

SALT 22, University of Chicago

Research Questions

What notion of **degree**, if any, underlies the interpretation of (relative) gradable adjectives in their positive form?

- How do speakers' judgments of gradable adjectives change across contexts (comparison classes C)?
- On the basis of what measures can these judgments be described?
 - Rank Order

Example: $\| Fred \text{ is tall } \|^{c} = 1 \text{ iff } Fred \in \text{tallest } 1/3 \text{ of } Cs$

Ordinal Degree (derived from ordering on C)

Example: [Fred is tall] c =1 iff HEIGHT(Fred) ∈ top 1/3 of heights of Cs

Measurement Degree (scale with distance metric)

Example: $[Fred is tall]^{c} = 1 \text{ iff HEIGHT(Fred)} > mean_{x \in C} HEIGHT(x)$

NB: Truth conditions are for purposes of illustration; no account of vagueness of GAs

	Delineation (strong)	Degree as		
		Equiv. class	Abstraction	Eq. class w/measures
Rank Order	Yes	Yes	Yes	Yes
Ordinal Degree	No	Yes	Yes	Yes
Measurement Degree	No	No	Yes	Only adj. w/num. measure

Experiment 1

Methodology: Adjective/Picture Matching (Barner & Snedeker 2008; Schmidt et al. 2009)

4 adjectives evaluated in context of 4 picture arrays (36 pictures/11 degrees)

- n=194 (mean age: 35.7, 124 female); 1 adjective/distribution per subject (rotated)
- Online via Amazon Mturk (U.S. IP address; screened for native English)

Predictions

If **rank order** alone sufficient: If **ordinal degree** alone sufficient:

- # of items checked same across conditions
- 'cut-off' same for baseline/left/right; higher for moved

Results

- Neither rank order nor ordinal degree alone sufficient
 - Does not rule out combination of two
- ➤ Judgments of non-numerical *pointy* more absolute/less dependent on C

REFERENCES: Bale, A.C. (2008). A universal scale of comparison. Linguistics & Philosophy 31, 1-55. Barner, D. & Snedeker, J. (2008). Compositionality and statistics in adjective acquisition. Child Development 79, 594-608. Kennedy (2007). Vagueness and grammar. Linguistics & Philosophy 31, 1-45. Klein, E. (1980). A semantics for positive and comparative adjectives. Linguistics & Philosophy 4, 1-45. Klein, E. (1991). Comparatives. In: A. von Stechow & D. Wunderlich (eds.), Semantik: Ein Internationales Handbuch der Zeitgenossischen Forschung, 673-691. Berlin: Walter de Gruyter. Schmidt, L.A., Goodman, N.D., Barner, D. & Tenebaum, J.B. (2009). How tall is tall? Compositionality, statistics and gradable adjectives. Proceedings of the 31st Annual Conference of the Cognitive Science Society. Cresswell, M.J. (1976). The semantics of degree. In: B.H. Partee (ed.), Montague Grammar, 261-292. New York: Academic Press. Stechow, A. von (1984). Comparing semantic theories of comparison. Journal of Semantics 3, 1-77.

Theories of Gradability

Delineation (Klein 1980)

Gradable adjectives denote partial functions that induce a three-way partition on a comparison class C

not tall extension gap tall

- Not explicitly based on degrees
- Strongest version: no notion of degree at all involved

Degree (Cresswell 1976; von Stechow 1984; Kennedy 2007; a.o.) Gradable adjectives relate individuals to degrees on a scale

 $[tall] = \lambda d\lambda x.HEIGHT(x) \ge d$

[Fred is tall] = 1 iff HEIGHT(fred) > d_{Std} , where d_{Std} = f(C)

■ Degree as **Equivalence Class** (Cresswell 1976; Klein 1991)
Relation on domain: $x \gtrsim_{\mathsf{HEIGHT}} y$ 'x has as least as much height as y' $\mathsf{HEIGHT}(\mathsf{fred}) = \{x: x \sim_{\mathsf{HEIGHT}} \mathsf{fred}\} - \mathsf{ordinal\ scale\ only}$

Degree as Abstraction (von Stechow 1984)

HEIGHT(fred) = $n \in \mathbb{R}$ (a number) - scale with distance metric

- Degree as Equivalence Class w/Numerical Measures (Bale 2008)
 - For adjectives with corresponding numerical measurement systems, measurements (e.g. 6 feet) participate in relation as individuals
 - Derived scale isomorphic to that associated w/measurement system

Experiment 2

Methodology: As in Experiment 1

- 3 adjectives (big, tall, dark); 3 distributions
 - Designed to distinguish ordinal degree vs. measurement degree

■ n=170 native English speakers (mean age: 30.4, 111 female)

Predictions

If ordinal degree sufficient: baseline = rank equivalent

If not, must infer abstract measurement degree

If measurement degree depends on numerical measure: dark ≠ big/tall

Results

Linear mixed effects model:
Adjective & numerical as fixed factors;
subject as random factor
% critical item checked:

rank < baseline (p<0.001)
non-numerical x rank, size (p<0.001)
- effects less pronounced

Measurement degree not sufficient; require abstract notion of degree

- but rank < baseline also for non-

Independent of the structure of C
 Also for adjective without measurement system

Conclusions

- Interpretation of gradable adjectives in their positive form involves degrees organized into a scale with a distance metric
 - Supports abstract theory of degree over one in which scales are derived from an ordering relation on a comparison class
- Some interadjective differences -- but no evidence that scale structure depends on presence/absence of measurement system
- For the future ...
 - ... More adjectives (numerical/non-numerical; evaluative)
- ... Overt comparison classes (tall for a boy)

stephanie.solt@gmail.com