Neglect-zero and no-split: cognitive biases at the semantic-pragmatic interface

Maria Aloni
(joint work with Tom Klochowicz and Giorgio Sbardolini)
ILLC & Philosophy
University of Amsterdam
M.D.Aloni@uva.nl

Free Choice Inferences: Theoretical and experimental approaches
15 May 2024
Goal of the project: a formal account of a class of natural language inferences which deviate from classical logic

Common assumption: these deviations are not logical mistakes, but consequence of pragmatic enrichments

Strategy: develop *logics of conversation* which model next to literal meanings also pragmatic/cognitive factors and the additional inferences which arise from their interaction

Novel hypothesis: *neglect-zero* tendency (and *no-split*) as crucial pragmatic/cognitive factors

Main conclusion: deviations from classical logic consequence of pragmatic enrichments albeit not of the canonical Gricean kind

Nihil team
MA, Anttila, Knudstorp, Degano, **Klochowicz**, Ramotowska, **Sbardolini**
Non-classical inferences

Free choice (FC)

(1) \(\Diamond (\alpha \lor \beta) \leadsto \Diamond \alpha \land \Diamond \beta \)

(2) Deontic FC inference [Kamp 1973]
 a. You may go to the beach or to the cinema.
 b. \(\leadsto \) You may go to the beach and you may go to the cinema.

(3) Epistemic FC inference [Zimmermann 2000]
 a. Mr. X might be in Victoria or in Brixton.
 b. \(\leadsto \) Mr. X might be in Victoria and he might be in Brixton.

Ignorance

(4) The prize is in the attic or in the garden \(\leadsto \) speaker doesn’t know where

(5) ? I have two or three children. [Grice 1989]

- In the standard approach, ignorance inferences are conversational implicatures
- Less consensus on FC inferences analysed as conversational implicatures; grammatical implicatures; semantic entailments; . . .
Novel hypothesis: neglect-zero

- FC and ignorance inferences are \[\neq \text{semantic entailments} \]
 - Not the result of Gricean reasoning \[\neq \text{conversational implicatures} \]
 - Not the effect of applications of covert grammatical operators \[\neq \text{scalar implicatures} \]

- But rather a consequence of something else speakers do in conversation, namely,

Neglect-Zero

when interpreting a sentence speakers create mental structures representing reality\(^1\) and in doing so they systematically neglect structures which verify the sentence by virtue of an empty configuration (zero-models)

- Tendency to neglect zero-models follows from the difficulty of the cognitive operation of evaluating truths with respect to empty witness sets \[\text{[Nieder 2016, Bott et al, 2019]} \]

Novel hypothesis: neglect-zero

Illustrations

(6) Every square is black.
 a. Verifier: [◼,◼,◼]
 b. Falsifier: [◼,□,◼]
 c. Zero-models: []; [△,△,△]; [◇,▲,◇]; [▲,▲,▲]

(7) Less than three squares are black.
 a. Verifier: [◼,□,◼]
 b. Falsifier: [◼,◼,◼]
 c. Zero-models: []; [△,△,△]; [◇,▲,◇]; [▲,▲,▲]; [□,□,□]

- Cognitive difficulty of zero-models confirmed by experimental findings from number cognition and has been argued to explain
 - the special status of 0 among the natural numbers [Nieder, 2016]
 - why downward-monotonic quantifiers are more costly to process than upward-monotonic ones (less vs more) [Bott et al., 2019]
 - existential import & connexive principles operative in Aristotelian logic (every A is B ⇒ some A is B; not (if not A then A)) [MA, 2024]

- Core idea: tendency to neglect zero-models, assumed to be operative in ordinary conversation, explains FC and related inferences
Novel hypothesis: neglect-zero

Illustrations

(8) It is raining.
 a. Verifier: \[
 \]
 b. Falsifier: \[
 \]
 c. Zero-models: none

(9) It is snowing.
 a. Verifier: \[
 \]
 b. Falsifier: \[
 \]; \[
 \]; \ldots
 c. Zero-models: none

(10) It is raining or snowing.
 a. Verifier: \[
 \]
 b. Falsifier: \[
 \]
 c. Zero-models: \[
 \]; \[
 \]; \[
 \]

▶ Two models in (10-c) are zero-models because they verify the sentence by virtue of an empty witness for one of the disjuncts
▶ Ignorance effects arise because such zero-models are cognitively taxing and therefore disregarded
Novel hypothesis: no-split

A closer look at the disjunctive case

(11) It is raining or snowing.
 a. Verifier: $[\text{rain} \mid \text{snow}]$ [⇐ “split” state]
 b. Falsifier: $[\text{sun}]$
 c. Zero-models: $[\text{rain}]; [\text{snow}]$

- The “split” verifier in (11-a) involves the entertainment of two alternatives, also arguably a cognitively difficult operation

- We conjecture that the ability to split states is acquired late
 \Rightarrow NO-SPLIT HYPOTHESIS

- The combination of neglect-zero and no-split can explain non-classical inferences observed in pre-school children
No-split and the acquisition of ‘or’

▶ **Basic data:** some pre-school children interpret *or* as *and* [e.g., Singh *et al* 2016, Cochard 2023, Bleotu *et al* 2024]:

(12) The boy is holding an apple or a banana = The boy is holding an apple and a banana

\[(\alpha \lor \beta) = (\alpha \land \beta)\]

(13) Every boy is holding an apple or a banana = Every boy is holding an apple and a banana

\[\forall x(\alpha \lor \beta) = \forall x(\alpha \land \beta)\]

(14) Liz can buy a croissant or a donut = Liz can buy a croissant and a donut

\[\Diamond(\alpha \lor \beta) = \Diamond(\alpha \land \beta)\]

▶ **Two different explanations:**

▶ **Singh *et al*:** derive \(\alpha \land \beta\) from \(\alpha \lor \beta\) as a scalar implicature using

\[\text{exh-ALT} = \{\alpha \land \neg \beta, \beta \land \neg \alpha\}\]

[or, alternatively, by innocent inclusion]

\[\Leftrightarrow\] children can compute scalar implicatures and can exhaustify alternatives, but don’t have access to lexical alternatives

▶ **Nihil:** beside neglecting zero-models, children further lack the ability to split states, i.e. have difficulties in engaging with alternative epistemic possibilities, in picturing different ways the world might be.
BSML: teams and bilateralism

- **Team semantics:** formulas interpreted wrt a set of points of evaluation (a team) rather than single ones

 [Hodges 1997; Väänänen 2007]

Classical vs team-based modal logic

- Classical modal logic:

 \[M = \langle W, R, V \rangle \]

 (truth in worlds)

- Team-based modal logic:

 \[M, t \models \phi, \text{ where } t \subseteq W \]

Bilateral state-based modal logic (BSML)

- Teams \(\leftrightarrow \) information states

 [Dekker93; Groenendijk\(^+\)96; Ciardelli\(^+\)19]

- Assertion & rejection conditions modelled rather than truth

 \[M, s \models \phi, \text{ “} \phi \text{ is assertable in } s \text{”, with } s \subseteq W \]

 \[M, s \models \phi, \text{ “} \phi \text{ is rejectable in } s \text{”, with } s \subseteq W \]

- Neglect-zero tendency modelled by \(\text{NE} \)

 [Yang & Väänänen 2017]

- BSML\(^F\): No-split modelled via a flattening operator \(F \)

 [Punčochář 2024]
BSMLF: Classical Modal Logic + NE + F

Language

$$\phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \Box \phi \mid \text{NE} \mid \text{F}$$

Bilateral team semantics

$$[M = \langle W, R, V \rangle \& s, t, t' \subseteq W]$$

$$M, s \models p$$ iff for all $w \in s : V(w, p) = 1$$

$$M, s \models \neg \phi$$ iff $M, s \models \phi$$

$$M, s \models \phi \lor \psi$$ iff there are $t, t' : t \cup t' = s \& M, t \models \phi \& M, t' \models \psi$$

$$M, s \models \phi \land \psi$$ iff $M, s \models \phi \& M, s \models \psi$$

$$M, s \models \Box \phi$$ iff for all $w \in s : \exists t \subseteq R[w] : t \neq \emptyset \& M, t \models \phi$$

$$M, s \models \text{NE}$$ iff $s \neq \emptyset$ [where $R[w] = \{ v \in W \mid wRv \}$]

$$M, s \models \text{F} \phi$$ iff for all $w \in s : M, \{ w \} \models \phi$$
Neglect-zero effects in BSML: split disjunction

- A state s supports a disjunction $\phi \lor \psi$ iff s is the union of two substates, each supporting one of the disjuncts.

![Diagram showing verifiers and falsifiers for disjunctions](image)

Figure: Models for $(a \lor b)$.

- $\{w_a\}$ verifies $(a \lor b)$ by virtue of an empty witness for the second disjunct, $\{w_a\} = \{w_a\} \cup \emptyset \& M, \emptyset \models b \quad \rightarrow \text{zero-model}$

- Main idea: define neglect-zero enrichments, $[\]^+$, whose core effect is to rule out such zero-models.

- Implementation: $[\]^+$ defined using $\text{NE} (s \models \text{NE} \iff s \neq \emptyset)$, which models neglect-zero in the logic.
Neglect-zero effects in BSML: enriched disjunction

- s supports an enriched disjunction $[\phi \lor \psi]^+$ iff s is the union of two non-empty substates, each supporting one of the disjuncts

\[[a \lor b]^+ \]

\[[a \lor b]^+ \]

\[[a \lor b]^+ \]

- An enriched disjunction requires both disjuncts to be live possibilities

(15) It is raining or snowing \rightsquigarrow It might be raining and it might be snowing

- Main result: in BSML $[\]^+$-enrichment has non-trivial effect only when applied to positive disjunctions $[\]^+$-enrichment vacuous under single negation.
More no-zero verifiers for enriched disjunction

\[\vdash \neg (a \land b) \]

\[\not \vdash \neg (a \land b) \]

\[\not \vdash \neg \Box a \]

\[\vdash \neg \Box a \]

Figure: Models for enriched \([a \lor b]^+\).
Neglect-zero effects in BSML: possibility vs uncertainty

- More no-zero verifiers for $a \lor b$:

(a) scalar

(b) no-uncertain

(c) no-split

- Two components of full ignorance (‘speaker doesn’t know which’):\(^2\)

(16) **It is raining or it is snowing** ($\alpha \lor \beta$) \(\sim\)

a. **Uncertainty**: $\neg \Box_e \alpha \land \neg \Box_e \beta$

b. **Possibility**: $\Diamond_e \alpha \land \Diamond_e \beta$ \quad (equiv $\neg \Box_e \neg \alpha \land \neg \Box_e \neg \beta$)

- **Fact**: Only possibility derived as neglect-zero effect:

- $\{w_{ab}, w_a\} \models \Diamond_e a \land \Diamond_e b$, but $\not\models \neg \Box_e a$

- $\{w_{ab}, w_a\}$: a no-zero model supporting possibility but neither uncertainty nor scalar implicature ($\not\models \neg (a \land b)$)

Two derivations of full ignorance

1. Neo-Gricean derivation [Sauerland 2004]
 (i) Uncertainty derived through quantity reasoning

 (17) \(\alpha \lor \beta \)
 Assertion

 (18) \(\neg \Box_e \alpha \land \neg \Box_e \beta \)
 Uncertainty (from quantity)

 (ii) Possibility derived from uncertainty and quality about assertion

 (19) \(\Box_e (\alpha \lor \beta) \)
 Quality about assertion

 (20) \(\Rightarrow \Diamond_e \alpha \land \Diamond_e \beta \)
 Possibility

2. Nihil derivation

 (i) Possibility derived as neglect-zero effect

 (21) \(\alpha \lor \beta \)
 Assertion

 (22) \(\Diamond_e \alpha \land \Diamond_e \beta \)
 Possibility (from neglect-zero)

 (ii) Uncertainty derived from possibility and scalar reasoning

 (23) \(\neg (\alpha \land \beta) \)
 Scalar implicature

 (24) \(\Rightarrow \neg \Box_e \alpha \land \neg \Box_e \beta \)
 Uncertainty
Neglect-zero effects in BSML: possibility vs uncertainty

Comparison with competing accounts

- Neo-Gricean vs Nihil predictions
 - **Neo-Gricean**: No possibility without uncertainty
 - **Nihil**: Possibility derived independently from uncertainty

Experimental study

- Experimental findings in agreement with Nihil predictions [Degano et al 2023]
 - Using adapted mystery box paradigm, compared conditions in which
 - both uncertainty and possibility are false [zero-model]
 - uncertainty false but possibility true [no-zero, no-uncertain model]
 - Less acceptance when possibility is false (95% vs 44%)
- Evidence that possibility can arise without uncertainty
Neglect-zero and no-split

- More no-zero verifiers for \(a \lor b \):
 - (d) scalar
 - (e) no-uncertain
 - (f) no-split

\[\{w_{ab}\} \text{ is a no-split verifier for the disjunction: no alternatives entertained;} \]

- Conjecture: only no-split verifiers accessible to ‘conjunctive’ pre-school children [Klochowicz, Sbardolini, MA, 2024]
- Combination of no-split and no-zero gives us conjunctive or
- Implementation: uses flattening operator \(F \)
 \[M, s \models F\phi \text{ iff for all } w \in s : M, \{w\} \models \phi \]

Flattening \(\mapsto \) formulas always interpreted wrt to singleton states
Figure: Combination of no-split and no-zero gives us conjunctive or

(25) It is raining or snowing.

a. No-zero & split: $[\text{weather} | \text{weather} \text{ weather}]$ [adult-like]
b. Zero and no-split: $[\text{weather} \text{ weather}]$ [logician]
c. No-zero & no-split: $[\text{weather} + \text{weather}]$ ['conjunctive’ children]
No-split: some predictions

(26) a. \([F(\alpha \lor \beta)]^{+/*} \equiv \alpha \land \beta\]

b. \([\forall x F(\alpha \lor \beta)]^{+/*} \equiv \forall x (\alpha \land \beta)\]

c. \(\diamond F(\alpha \lor \beta)]^{+/*} \equiv \diamond (\alpha \land \beta)\]

d. \([-F(\alpha \lor \beta)]^{+/*} \equiv \neg \alpha \land \neg \beta\]

e. \([-F(\alpha \land \beta)]^* \equiv \neg \alpha \land \neg \beta, \text{ but } [-F(\alpha \land \beta)]^+ \not\equiv \neg \alpha \land \neg \beta\]

▶ Two ways to model neglect-zero effects:
 ▶ Syntactically, via pragmatic enrichment function \([\]^+\) defined in terms of \(\text{NE} \mapsto \text{BSML}^+\)
 ▶ Model-theoretically, by ruling out \(\emptyset\) from the set of possible states \(\mapsto \text{BSML}^*\)

▶ Both implementations derive:
 \(\mapsto \text{FC effects (narrow and wide scope FC, dual prohibition, etc);}\)
 \(\mapsto \text{conjunctive or in combination with flattening (26-a-d).}\)

▶ But only BSML* predicts
 ▶ \textbf{Negative FC:} \(\neg \Box (\alpha \land \beta) \sim \neg \Box \alpha \land \neg \Box \beta\) \[\text{Marty et al}\]
 ▶ \textbf{Homogeneity effects} in combination with \(F\) (26-e) \[\text{Sbardolini23}\]

▶ Only in BSML\(^+\), \(\emptyset\) is part of the building blocks (natural to assume BSML* for “conjunctive” children who plausibly do not access \(\emptyset\))
Two views

- Two explanations of conjunctive ‘or’ in pre-school children:
 - **Grammatical view**: conjunctive children can compute implicatures but do not have access to scalar alternatives (or < and);
 - **Nihil**: conjunctive behaviour derives from the combination of two cognitive bias: no-zero and no-split.

<table>
<thead>
<tr>
<th></th>
<th>conjunctive or</th>
<th>inclusive or</th>
<th>exclusive or</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grammatical</td>
<td>exh-alt [✓]</td>
<td>exh-alt [no]</td>
<td>scalar-alt [✓]</td>
</tr>
<tr>
<td>Nihil</td>
<td>zero [no] & split [no]</td>
<td>split [✓]</td>
<td>split [✓] & scalar reasoning [✓]</td>
</tr>
</tbody>
</table>

- Two different acquisition patterns:
 - **Grammatical view**: inclusive or < conjunctive or < exclusive or
 - **Nihil**: conjunctive or < inclusive or < exclusive or
Conclusions

▶ **FC and related inferences**: a mismatch between logic and language
▶ **Grice’s insight**:
 ▶ stronger meanings can be derived paying more “attention to the nature and importance to the conditions governing conversation”
▶ **Nihil proposal**: stronger meanings consequences of cognitive biases
 ▶ FC and ignorance as neglect-zero effects

 Literal meanings (NE-free fragment) + cognitive factors (NE)
 \[\Rightarrow \text{FC & possibility inferences} \]

▶ **Conjunctive or** as no-zero + no-split effect

 Literal meanings (NE-free fragment) + cognitive factors (NE, F) \[\Rightarrow \text{conjunctive or} \]

▶ **Implementation in BSML^F** (a team-based modal logic)
Collaborators & related (future) research

Logic
Proof theory (Anttila, Yang); expressive completeness (Anttila, Yang, Knudstorp); bimodal perspective (Knudstorp, Baltag, van Benthem, Bezhanishvili); qBSML (van Ormondt); BiUS & qBiUS (MA); typed BSML (Muskens); Aristotelian logic in qBSML→ (MA);...

Language
FC cancellations (Pinton, Hui); modified numerals (vOrmondt); attitude verbs (Yan); conditionals (Flachs); questions (Klochowicz); quantifiers (Ramotowska, Klochowicz, Bott, Schlotterbeck); indefinites (Degano); homogeneity (Sbardolini); experiments (Degano, Klochowicz, Ramotowska, Bott, Schlotterbeck, Marty, Breheny, Romoli, Sudo); acquisition (Sbardolini, Klochowicz);...

Thank You!³

³This work is supported by the NWO OC project Nothing is Logical (NihiL) (grant no 406.21.CTW.023)