Indefinites in comparatives

Maria Aloni & Floris Roelofsen

University of Amsterdam, ILLC

SALT 21, Rutgers 20/05/2011

Indefinites in comparatives

- ► Goal: explain distribution and meaning of indefinites in comparatives
- ▶ Focus on English *any* and *some*, and German *irgend*-indefinites:
 - (1) a. John is taller than (almost) any girl. [universal meaning]
 - b. John is taller than some girl. [existential meaning]
 - c. John is taller than IRGENDEIN girl. [universal meaning]
- Two observations:
 - Any in comparatives is free choice rather than NPI (Heim 2006)
 - Irgend-indefinites must be stressed to have universal meaning in comparatives (Haspelmath 1997)
- Three puzzles:
 - 1. FC-any licensed in comparatives;
 - 2. The case of stressed irgend-indefinites in comparatives;
 - 3. Differences in quantificational force.

First puzzle: FC-any in comparatives

- Restricted distribution of FC-any:
 - (2) a. Any girl may fall.
 - b. #Any girl fell.
 - c. Any girl who tried to jump fell.

[subtrigging]

- Various explanations for (2):
 - Universalist account: Dayal (1998)
 - Modal account: Giannakidou (2001)
 - Non individuation: Jayez & Tovena (2005)
 - Implicature account: Chierchia (2010)
 - Alternative semantics: Menèndez-Benito (2005)/Aloni (2007)
 - ▶ ...
- Can any of these be extended to the case of comparatives?
 - (3) John is taller than any girl.

Second puzzle: irgend-indefinites [K&S 2002, Port 2010]

- When unstressed, *irgend* has a free distribution, and in positive contexts a meaning similar to English *some*:
 - (4) Irgend jemand hat angerufen. #Rat mal wer? irgend somebody has called guess prt who?
 'Somebody called – speaker doesn't know who' [Haspelmath 1997]
- ▶ When stressed, it has meaning and distribution similar to *any*:
 - (5) Dieses Problem kann IRGEND JEMAND lösen.
 'This problem can be solved by anyone' [Haspelmath 1997]
 - Joan Baez sang besser als IRGEND JEMAND JE zuvor.
 'Joan Baez sang better than anyone ever before' [Haspelmath 97]
- How can this pattern be accounted for? What is the role of stress?

Third puzzle: quantificational force

- Different quantificational force for indefinites in comparatives:
 - (7) a. John is taller than any girl.
 - b. John is taller than some girl.
 - c. John is taller than IRGENDEIN girl.

[universal meaning] [existential meaning] [universal meaning]

- Let's assume indefinites are existentials
- Predictions for indefinites in comparatives:
 - ► Early theories of comparatives (Seuren/von Stechow/Rullmann):
 ⇒ universal meaning for all sentences in (7)
 - Recent theories (Larson/Schwarzschild&Wilkinson/Heim/Gajewski):

 \Rightarrow existential meaning for all sentences in (7)

Plan:

- Adopt a more sophisticated analysis for indefinites:
 - → alternative semantics [Kratzer & Shimoyama/Menèndez-Benito]
- Discuss three cases:
 - 1. Alternative semantics + an early theory: Standard Theory
 - 2. Alternative semantics + a recent theory: Maximality Theory
 - 3. [Alternative semantics + another recent theory: Exhaustivity Theory]

Alternative semantics for indefinites

MOTIVATION

- Explain variety of indefinites. E.g.
 - English: a, some, any, ...
 - Italian: un(o), qualche, qualsiasi, nessuno, ...
 - ▶ German: ein, irgendein, welcher, ...

How

- Indefinites 'introduce' sets of propositional alternatives;
- ► These are bound by propositional operators: [∃], [∀], [Neg], [Q];
- Different indefinites associate with different operators.

EXAMPLES

(8) a.
$$[\exists]$$
 (someone/irgendjemand fell) [K&S 2002]

b. [Q] (who fell)

d. d_1 fell d_2 fell

c. [Neg] (nessuno fell)

FREE CHOICE ANY

- ► FC *any* requires the application of two covert operators:
 - (9) $[\forall] \dots exh(\dots any \dots)$ [Menèndez-Benito 2005]

Free choice any in alternative semantics

- ► The operator exh delivers a set of mutually exclusive propositions (let [[α]] = {d₁, d₂}):
 - (10) a. $exh[\alpha, P]$ type: (st) b. {only d_1 is P, only d_2 is P, only d_1 and d_2 are P}

Ruling out FC-any in episodic contexts:

(11) a. #Any girl fell.
b.
$$[\forall](exh[any girl, fell])$$

c. $[\forall] \ only d_1 fell \ only d_2 fell \ only d_1 and d_2 fell \ ...$
d. Predicted meaning: \bot

► Licensing FC-*any* under \diamond :

- b. $[\forall](\diamond(exh[any girl, fall]))$
- $\mathsf{C}. \qquad \left[\forall\right] \quad \diamondsuit \text{ only } d_1 \text{ falls } \quad \diamondsuit \text{ only } d_2 \text{ falls } \quad \diamondsuit \text{ only } d_1 \text{ and } d_2 \text{ fall } \quad \dots \quad$
- d. Predicted meaning: universal free choice

Comparatives: two theories

- 1. S-theory: (Seuren/vStechow/Rullman)
 - ► Gradable adjectives are monotone functions of type *e*(*dt*):
 - (13) a. John is taller than Mary.
 - b. λd . John is d tall $\supset \lambda d$. Mary is d tall
 - Universal meanings for existentials in *than*-clauses
 - Problem: quantifiers must scope out of the than-clause
- 2. M-theory: (Schwarzschild & Wilkinson/Heim) [cf. Gajewski 09]
 - ▶ Places a scope-taking operator (negation) within the *than*-clause:
 - (14) a. John is taller than Mary.
 - b. $max(\lambda d. \text{ John is } d \text{ tall}) \in \lambda d.$ Mary is **not** d tall
 - Existential meanings for existentials in *than*-clauses
 - Problems only with DE quantifiers
- ▶ NEXT: implementation in alternative semantics

S-theory: basic example

The comparative morpheme, **more**, takes two 'intensional' degree properties, of type d(st), and delivers a proposition, of type (st)

(15)
$$\llbracket \mathsf{more}^{\mathsf{S}} \rrbracket = \lambda Q_{d(st)} \cdot \lambda P_{d(st)} \cdot \lambda w \cdot [\lambda d \cdot P(d, w) \supset \lambda d \cdot Q(d, w)]$$

- (16) a. John is taller than Mary.
 - b. [more^S [$\lambda d.\lambda w.T(m,d,w)$]] [$\lambda d.\lambda w.T(j,d,w)$]
 - c. $\{\lambda w. [\lambda d. \text{ John is } d \text{ tall in } w \supset \lambda d. \text{ Mary is } d \text{ tall in } w]\}$

S-theory: some

- (17) a. John is taller than some girl.
 - b. $[\exists]$ [more^S[λd .[some girl, $\lambda x. \lambda w. T_w(x, d)$]]][$\lambda d. \lambda w. T_w(j, d)$]
 - c. $[\exists] \{ \lambda w.[\lambda d. T_w(j, d) \supset \lambda d. T_w(y, d)] \mid y \text{ is a girl} \}$
 - d. The set of worlds *w* such that **at least one** of the following holds:
 - $\{d \mid \text{John is } d\text{-tall in } w\} \supset \{d \mid \text{Mary is } d\text{-tall in } w\} \\ \{d \mid \text{John is } d\text{-tall in } w\} \supset \{d \mid \text{Sue is } d\text{-tall in } w\}$

 \Rightarrow for some girl y, John is taller than y

S-theory: any

(18) a. John is taller than any girl.

- b. $[\forall] [more^{S} [\lambda d.exh[any girl, \lambda x. \lambda w. T_{w}(x, d)]]] [\lambda d. \lambda w. T_{w}(j, d)]$
- c. The set of worlds *w* such that **all** of the following hold:

$$\begin{array}{l} \{d \mid J \text{ is } d\text{-tall in } w\} \supset \{d \mid \text{only } M \text{ is } d\text{-tall in } w\} \\ \{d \mid J \text{ is } d\text{-tall in } w\} \supset \{d \mid \text{only } S \text{ is } d\text{-tall in } w\} \\ \{d \mid J \text{ is } d\text{-tall in } w\} \supset \{d \mid \text{both } S \text{ and } M \text{ are } d\text{-tall in } w\} \end{array}$$

 \Rightarrow for every girl y, John is taller than y

M-theory: basic example

(19)
$$\llbracket \mathsf{more}^{M} \rrbracket = \lambda P_{d(st)} \cdot \lambda Q_{d(st)} \cdot \lambda w \cdot [\mathsf{max}(\lambda d. Q(d, w)) \in \lambda d. P(d, w)]$$

- (20) a. John is taller than Mary.
 - b. [more^M[$\lambda d.\lambda w.\neg T_w(m,d)$]][$\lambda d.\lambda w.T_w(j,d)$]
 - c. $\{\lambda w.[max(\lambda d. J \text{ is } d \text{ tall in } w) \in \lambda d. M \text{ is not } d \text{ tall in } w\}$

M-theory: some

- (21) a. John is taller than some girl.
 - b. $[\exists][more^{M}[\lambda d.[some girl, \lambda x. \lambda w. \neg T_{w}(x, d)]]] [\lambda d. \lambda w. T_{w}(j, d)]$
 - c. $[\exists] \{ \lambda w.[max(\lambda d.T_w(j,d)) \in (\lambda d. \neg T_w(y,d)) \mid y \in \{Mary, Sue\} \}$
 - d. The set of worlds *w* such that **at least one** of the following holds:

 $max\{d \mid \text{John is } d\text{-tall in } w\} \in \{d \mid \text{Mary is not } d\text{-tall in } w\}$ $max\{d \mid \text{John is } d\text{-tall in } w\} \in \{d \mid \text{Sue is not } d\text{-tall in } w\}$

 \Rightarrow for some girl y, John is taller than y

M-theory: any

(22) John is taller than any girl.

 $[\forall] [\mathsf{more}^{M}[\lambda d. \neg \mathsf{exh}[\mathrm{any \ girl}, \lambda x. \lambda w. T_{w}(x, d)]]] [\lambda d. \lambda w. T_{w}(j, d)]$

The set of worlds w such that **all** of the following hold:

 $max\{d \mid J \text{ is } d\text{-tall in } w\} \in \{d \mid \text{not only S is } d\text{-tall in } w\}$ $max\{d \mid J \text{ is } d\text{-tall in } w\} \in \{d \mid \text{not only M is } d\text{-tall in } w\}$ $max\{d \mid J \text{ is } d\text{-tall in } w\} \in \{d \mid \text{not both S and M are } d\text{-tall in } w\}$

 \Rightarrow for every girl y, John is taller than y

Crucial assumption: any scopes under negation

Summary

Examples:

(23)	a.	John is taller than any girl.	[universal meaning]
	b.	John is taller than some girl.	[existential meaning]

Predictions:

		some	any
(24)	S-theory	yes	yes
	M-theory	yes	yes

- Crucial assumption M-theory: any must scope under negation!
- ▶ NEXT: the case of *irgend*-indefinites

Irgend-indefinites: the crucial role of accent

Observation

- ▶ In free choice uses and in comparatives, the *irgend*-indefinite must be stressed (Haspelmath 1997):
 - (25) Dieses Problem kann IRGEND JEMAND lösen. 'This problem can be solved by anyone'
 - (26) Joan Baez sang besser als IRGEND JEMAND JE zuvor.'Joan Baez sang better than anyone ever before'

Proposal

- Stress signals focus, and focus has two semantic effects:
 - (i) it introduces a set of focus alternatives (Rooth 1985)
 - (ii) it flattens the ordinary alternative set (Roelofsen & van Gool 2010)

Applications:

- (i) allows us to derive FC inferences of stressed *irgend*-indefinites under modals as obligatory implicatures à la Chierchia 2010
- (ii) yields an account of stressed *irgend* in comparatives

Two effects of focus

Focus:

- (i) introduces a set of focus alternatives (Rooth 1985)
- (ii) flattens the ordinary alternative set (Roelofsen & van Gool 2010):

(27) a. If α is of type (*st*), then $\llbracket \alpha \rrbracket$ is a set of propositions, and $\llbracket \alpha_F \rrbracket = \{\bigcup \llbracket \alpha \rrbracket\}$

b. If
$$\alpha$$
 is of type $\sigma \neq (st)$, then
 $\llbracket \alpha_F \rrbracket = \{\lambda z. \bigcup_{y \in \llbracket \alpha \rrbracket} z(y)\}$, where z is of type $\sigma(st)$

- Illustration:
 - (28) Irgendjemand called
 - a. Alternative set: {Mary called, Sue called, ... }
 - b. Focus value: ∅
 - (29) Irgendjemand_F called
 - a. Alternative set: {somebody called} [result of 'flattening']
 - b. Focus value: {Mary called, Sue called, ... }

Original motivation: alternative versus polar questions

- Disjunctive questions are ambiguous:
 - (30) Does Ann or Bill play?
 - a. Alternative reading: expected answers $\mapsto Ann/Bill$
 - b. Polar reading: expected answers \mapsto yes/no
- Focus plays a disambiguating role:
 - (31) Does Ann_F or Bill_F play?
 - a. Alternative set: {Ann plays, Bill plays}
 - b. Focus set: {Ann plays, Bill plays, \dots }
 - c. \Rightarrow Alternative question meaning
 - (32) Does [Ann or Bill]_F play?
 - a. Alternative set: {Ann or Bill plays} [result of 'flattening']
 - b. Focus set: {Ann plays, Bill plays, ...}
 - c. \Rightarrow Polar question meaning

Irgend-indefinites in comparatives

(33) John is taller than IRGENDJEMAND_F.

S-theory

- (34) $[\exists] \operatorname{more}^{S}[\lambda d.[\operatorname{irgendjemand}_{F}, \lambda x. \lambda w. T_{w}(x, d)]] [\lambda d. \lambda w. T_{w}(j, d)]$
 - a. $[\exists] \{ \lambda w. [\lambda d. T(j, d) \supset \lambda d. \exists x T(x, d)] \}$
 - b. \Rightarrow for every person x, John is taller than x

M-theory

- (35) $[\exists] \mathbf{more}^{M}[\lambda d. \neg [\mathrm{irgendjemand}_{F}, \lambda x. \lambda w. T_{w}(x, d)]] [\lambda d. \lambda w. T_{w}(j, d)]$
 - a. $[\exists] \{ \lambda w.[max(\lambda d.T_w(j,d)) \in (\lambda d. \neg \exists x T_w(x,d)) \}$
 - b. \Rightarrow for every person x, John is taller than x

Crucial assumption: irgend scopes under negation

IRGEND versus SOME

(36)John is taller than IRGENDJEMAND_F. a. b. John is taller than $SOMEONE_F$.

S-theory

- (37)John is taller than SOMEONE_F. a.
 - $[\exists] \mathbf{more}^{S}[\lambda d.[someone_{F}, \lambda x. \lambda w. T_{w}(x, d)]] [\lambda d. \lambda w. T_{w}(j, d)]$ b.
 - c. $[\exists \{\lambda w. [\lambda d. T(j, d) \supset \lambda d. \exists x T(x, d)]\}$
 - d. \Rightarrow universal meaning

M-theory

- (38) John is taller than SOMEONEF. a.
 - $[\exists] \mathbf{more}^{R} [\lambda d. [someone_{F}, \lambda x. \lambda w. \neg T_{w}(x, d)]] [\lambda d. \lambda w. T_{w}(j, d)]$ b.
 - $[\exists] \{ \lambda w.[max(\lambda d. T_w(j, d)) \in (\lambda d. \exists x \neg T_w(x, d)) \}$ c.
 - d. \Rightarrow existential meaning

Crucial assumption: some scopes over negation

[universal meaning] [existential meaning]

[wrong!]

[ok!]

IRGEND versus SOME in the M-theory

- (39) a. John is taller than $SOMEONE_F$.
 - b. $[\exists] \{ \lambda w.[max(\lambda d.T_w(j,d)) \in (\lambda d.\exists x \neg T_w(x,d)) \}$
- (40) a. John is taller than $IRGENDJEMAND_F$.
 - b. $[\exists] \{ \lambda w.[max(\lambda d.T_w(j,d)) \in (\lambda d. \neg \exists x T_w(x,d)) \}$

Summary

Examples:

(41)	a.	John is taller than any girl.	[universal meaning]
	b.	John is taller than some girl.	[existential meaning]
	с.	John is taller than IRGENDJEMAND.	[universal meaning]
	d.	John is taller than SOMEONE.	[existential meaning]

Predictions:

		some	any	IRGEND	SOME
(42)	S-theory	yes	yes	yes	no
	M-theory	yes	yes	yes	yes

Crucial assumptions M-theory:

- (43) *some* (like ordinary quantifiers) must scope out of negation, *any* and *irgend* must scope under negation.
- Discussion: some is a PPI, while any and irgend are NPIs. But what about genuine FCIs like Italian qualunque or Spanish cualquiera?

Exhaustivity Theory for Comparatives

- The comparative morpheme er is an operator that takes two 'intensional' degrees, of type (sd), and delivers a proposition, of type (st):
 - (44) $\llbracket \mathbf{er} \rrbracket = \lambda d_2 \cdot \lambda d_1 \cdot \lambda w \cdot d_1(w) \ge d_2(w)$
 - (45) a. John is taller than Mary.
 - b. $\operatorname{er}[\operatorname{exh}_{e}[\lambda d.\lambda w. \neg T_{w}(m, d)]][\operatorname{exh}_{e}[\lambda d.\lambda w. T_{w}(j, d)]]$
 - the set of worlds w s.t. the maximal degree d s.t. John is d tall in w exceeds or is equivalent to the minimal degree d s.t. Mary is **not** d tall in w
- Crucially employs exh_e (and negation) at LF
- Similar to M-theory: problems with DE quantifiers (but also with non-monotone quantifiers)

Exhaustification and type-shift operations [Aloni 2007]

exh takes now a domain D (type e) and a property P (type e, (s, t)) and returns the property of exhaustively satisfying P wrt D:

(46) a.
$$exh[D, P]$$
 type: $e(s, t)$
b. $\{\lambda x \lambda w [x \text{ exhaustively satisfies } P \text{ wrt } D \text{ in } w]\}$ [Zeevat 94]

Normally exhaustive values are maximal plural entities, but with scalar predication other exhaustification effects show up (min/max values)

Properties can undergo two type-shifting operations:

(i) Partee iota rule: yields (intensional) max/min entities:

(47) a.
$$\text{SHIFT}_e(\exp[D, P])$$
 [= \exp_e]
b. { λw .the max/min entity from D satisfying P in w}

(ii) **'Hamblin' question formation rule**: yields sets of mutually exclusive propositions:

(48) a. SHIFT_(s,t)(
$$exh[D, P]$$
) [= exh_{st}]
b. {only d_1 is P , only d_2 is P , only d_1 & d_2 are P , ... }

Subtrigging via **exh**_e

Ruling out FC-any in episodic contexts:

(49) a. #Any girl fell.

- b. $[\forall](exh_{st}[any girl, fell])$
- C. $[\forall]$ only d_1 fell only d_2 fell only d_1 and d_2 fell ...
- d. Predicted meaning: \perp

► Licensing FC-*any* under ◇:

(50) a. Any girl may fall. b. [∀](◊(exh_{st}[any girl, fall])) c. [∀] ◊ only d₁ falls ◊ only d₂ falls ◊ only d₁ and d₂ fall d. Predicted meaning: universal free choice

- Licensing FC-any by subtrigging:
 - (51) a. Any girl who tried to jump fell.
 - b. $[\forall](\mathbf{exh}_e[\text{any girl}, \text{ who tried to jump}] \text{ fell})$
 - c. $[\forall] \quad d_1 \text{ fell} \quad d_2 \text{ fell}$
 - d. Predicted meaning: Every girl who tried to jump fell

Exhaustivity theory: any and some

- (52)a. John is taller than some girl.
 - b. $[\exists] \mathbf{er}[\mathbf{exh}_e[\lambda d.[\text{some girl}, \lambda x. \lambda w. \neg T_w(x, d)]]][\mathbf{exh}_e[\lambda d. \lambda w. T_w(j, d)]]$
 - $[\exists] \{\lambda w.max(\lambda d.T_w(j,d)) \geq min(\lambda d.\neg T_w(y,d)) \mid y \in \{\mathsf{M},\mathsf{S}\}\}$ c.
 - the set of worlds w s.t. at least one of the following holds: (i) d. the maximal degree d s.t. John is d tall in w exceeds or is equivalent to the *minimal* degree d s.t. Mary is not d tall in w(ii) the maximal degree d s.t. John is d tall in w exceeds or is equivalent to the *minimal* degree d s.t. Sue is not d tall in w
 - \Rightarrow existential meaning e.
- John is taller than any girl. a.
 - b. $[\forall] \mathbf{er}[\mathbf{exh}_e[\lambda d.[\mathrm{any girl}, \lambda x. \lambda w. \neg T_w(x, d)]]][\mathbf{exh}_e[\lambda d. \lambda w. T_w(j, d)]]$
 - $[\forall] \{ \lambda w.max(\lambda d.T_w(j,d)) \ge min(\lambda d.\neg T_w(y,d)) \mid y \in \{\mathsf{M},\mathsf{S}\} \}$ c.
 - d. the set of worlds w s.t. **all** of the following hold: (i) the maximal degree d s.t. John is d tall in w exceeds or is equivalent to the *minimal* degree d s.t. Mary is not d tall in w (ii) the maximal degree d s.t. John is d tall in w exceeds or is equivalent to the *minimal* degree d s.t. Sue is not d tall in w
 - \Rightarrow universal meaning e.

Comment: Any need not take scope under negation!

(53)

Exhaustivity theory: IRGEND versus SOME

- (54)John is taller than IRGEND JEMANDF. a.
 - b. $[\exists] \mathbf{er}[\mathbf{exh}_{e}[\lambda d.\neg[\mathrm{irgndjemand}_{F},\lambda x.w.T_{w}(x,d)]]][\mathbf{exh}_{e}[\lambda d.w.T_{w}(j,d)]]$
 - $[\exists] \{\lambda w.max(\lambda d.T_w(j,d)) > min(\lambda d. \neg \exists x T_w(x,d))\}$ c.
 - d. the set of worlds w s.t. the maximal degree d s.t. John is d tall in w exceeds or is equivalent to the *minimal* degree d s.t. **nobody** is d tall in w
 - \Rightarrow universal meaning e.
- a. John is taller than SOMEONE $_{F}$.
 - b. $[\exists] \mathbf{er}[\mathbf{exh}_e[\lambda d.[\mathrm{someone}_F, \lambda x. \lambda w. \neg T_w(x, d)]]][\mathbf{exh}_e[\lambda d. \lambda w. T_w(j, d)]]$
 - c. $[\exists] \{\lambda w.max(\lambda d.T_w(j,d)) > min(\lambda d.\exists x \neg T_w(x,d))\}$
 - the set of worlds w s.t. the maximal degree d s.t. John is d tall d. in w exceeds or is equivalent to the *minimal* degree d s.t. **somebody** is not *d* tall in *w*
 - \Rightarrow existential meaning e.

Assumption: Irgend-indefinites must scope under negation in than-clause, while some (like other ordinary quantifiers) must scope out of negation

(55)

Summary and conclusions

Predictions:

		some	any	IRGEND	SOME
(56)	S-theory	yes	via exh st	yes	no
	M-theory	yes	via exh st	yes	yes
	Ex-theory	yes	via exh_e	yes	yes

Assumptions:

- M-theory: some (like ordinary quantifiers) must scope out of negation, any and irgend must scope under negation
- Ex-theory: some (like ordinary quantifiers) must scope out of negation, irgend must scope under negation (any can choose)

Conclusions:

- Alternative semantics analysis of FC-any can be extended to the case of comparatives;
- Variable behavior of some, any and irgend derived;
- Universal meaning of stressed-*irgend* explained via existential closure triggered by focus.