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Introduction

Goal
A fully worked out quantified logic for epistemic modality which

I derives the infelicity of epistemic contradictions

I solves puzzles arising from the combination of epistemic modals and
quantifiers

while staying as close as possible to classical logic.

Outlook

1. Two challenges
I Infelicity of epistemic contradictions
I Quantification in situation of partial information

2. Quantified Epistemic Multilateral Logic (QEML)
I Motivation for multilateralism
I Proof theory and model theory
I Soundness and completeness & first order classicality

3. Applications and discussion
I Epistemic contradictions & non-factivity of ♦
I Epistemic modals and quantifiers
I The reach of classicality: embedded cases of epistemic contradictions



Infelicity of epistemic contradictions
I Epistemic modal might can be used to form Moore-like sentences

(Wittgenstein, Veltman):

(1) #It’s raining and I don’t believe that it is raining.

(2) #It’s raining and it might not be raining.

I But only (2) also infelicitous in embedded contexts (Yalcin 2007):

(3) Suppose that it’s raining and I don’t believe that it is raining.

(4) #Suppose that it’s raining and it might not be raining.

⇒ A purely pragmatic account of the infelicity of (2) would not suffice

Challenge

I Derive incoherence of (2) while preserving non-factivity of might:

a. Epistemic contradiction: p ∧ ♦¬p |= ⊥
b. Non-factivity: ♦p 6|= p

Classically: p ∧ ♦¬p |= ⊥ ⇒ ♦¬p |= ¬p
I Standard model-theoretic solutions use information states (Veltman,

Yalcin, a.o.)



Epistemic contradictions: proof-theoretical perspective
I Suppose we can derive ⊥ from ♦¬A ∧ A. By classical reductio we

would be able to derive ¬A from ♦¬A:

♦¬A [A]1

(∧-Introduction)
♦¬A ∧ A

(epistemic contradiction)
⊥

(classical reductio)1

¬A

I How can we prevent this derivation while preserving classicality?

First move

I Obvious culprit: classical reductio

I Replace classical reductio with weaker epistemic reductio:

[A]
...

⊥(classical reductio)
¬A

[A]
...

⊥(epistemic reductio)
♦¬A

I But such replacement is not sufficient



Epistemic contradictions: proof-theoretical perspective

Modals and quantification

I Desiderata

1. Barcan Formulae: ∀x�A→ �∀xA; ♦∃xAx → ∃x♦Ax (yes)
2. Converse BF: �∀xAx → ∀x�Ax ; ∃x♦Ax → ♦∃xAx (yes)
3. De re–de dicto collapse: ∀x♦Ax → ♦∀xAx ; �∃xAx → ∃x�Ax (no)
4. Converse dr-dd collapse: ♦∀xAx → ∀x♦Ax ; ∃x�Ax → �∃xAx (yes)

Problem

I De re–de dicto collapse can be derived with epistemic reductio:

[∃x¬Ax ]2

[∀x♦Ax ]3

(∀E.)
♦A[y/x ] [¬A[y/x ]]1

(epistemic contradiction)
⊥

(∃E.)1

⊥
(epistemic reductio)2

♦¬∃x¬Ax
(duality)

♦∀xAx
(conditional proof)3

∀x♦Ax → ♦∀xAx

⇒ Other classically valid principles must fail (in addition to reductio)



Weak assertion meets information states
I Challenge one: can we design a logical system which stays as close

as possible to classical quantified modal logic but still derives the
inconsistency of epistemic contradictions?

I Previous work
I Veltman (1997) developed a state-based model theory which derived

the inconsistency of epistemic contradictions without trivialising
epistemic ♦;

I Incurvati and Schlöder (2018) developed a multilateral proof theory
for propositional modal logic which derives epistemic contradictions
while preserving classicality.

I This paper extends the proof theory from Incurvati & Schlöder with
quantifiers and provides it with a model theory which uses states
(Veltman) and conceptual covers (Aloni 2001, 2005).

I Conceptual covers needed to address challenge two.
I References

I Aloni (2005) Individual concepts in modal predicate logic. Journal of
Philosophical Logic 34

I Incurvati & Schlöder (2018) Weak assertion. Philosophical Quarterly
(forthcoming)

I Veltman (1996) Defaults in update semantics. Journal of
Philosophical Logic 25



Reasoning in situations of partial information

Imagine that there is a lottery with only two tickets, a blue ticket
and a red ticket. The tickets are also numbered 1 through 2, but we
don’t know which color goes with which number. We know that the
blue ticket won. [Ninan 2018, page 1]

(one) Ticket #1 is such that it might be the winning ticket.
∃x(x = 1 ∧ ♦x = w)

(two) Ticket #2 is such that it might be the winning ticket.
∃x(x = 2 ∧ ♦x = w)

(all) Those are all the tickets. ∀x(x = 1 ∨ x = 2)

From these three premises we can then conclude (any): [inference 1]

(any) Any ticket might be the winning ticket.
∀x♦x = w

From (any), (red) seems to follow: [inference 2]

(red) The red ticket is such that it might be the winning ticket.
∃x(r = x ∧ ♦x = w)

but (red) is false. What is wrong with this (classically valid) reasoning?



Reasoning in situations of partial information

Lottery scenario

(lot) Ticket #1 is such that it might be the winning ticket. Ticket #2 is such
that it might be the winning ticket. Therefore any ticket might be the
winning ticket [inference 1]. But then the red ticket is such that it might
be the winning ticket [inference 2].

Informal analysis
Two salient ways to identify the tickets:

1. By number: ticket #1, ticket #2

2. By colour: the red ticket, the blue ticket

Evaluation of (any) depends on the method of identification:

(any) Any ticket might be the winning ticket.

True, if identification by number is adopted (as consequence of inference 1);
False, if identification by colour is adopted (as premise of inference 2).



Reasoning in situations of partial information

Implementation

I Identification methods formalized as conceptual covers, i.e.
I sets of individuating functions from W to D such that in each world

each individual is identified by at least one function (existence); in no
world is an individual counted twice (uniqueness) [Aloni 2001, 2005]

I Variables range over contextually determined conceptual covers:

(any) Anyn ticket might be the winning ticket.
∀xn♦x = w

a. True, if n 7→ {ticket1, ticket2}
b. False, if n 7→ {blue-ticket, red-ticket}
c. Contradictory, if n 7→ {the-winning-ticket, the-losing-ticket}

I Different variables can range over different covers:

(know) We don’t know whichn is whichm.
∀xn∀ym(♦x = y ∧ ♦x 6= y)

I Pragmatic selection of covers governed by general principles of
conversation.



Quantified Epistemic Multilateral Logic (QEML)

I The logic is based on a distinction between speech acts and contents
encoded at proof-theoretical and model-theoretical level.

I Classical logic is unilateral in that it models only one kind of content
(on the Fregean view, content that is asserted)

I Bilateral logics consider asserted alongside denied content
(Smiley 1996, Rumfitt 2000)

I Our approach is multilateral , considering (at least) four different
attitudes: weak/strong assertion and weak/strong rejection.

I Illustration: While, classically, propositions can be either true or
false, in conversation agents may display a more diversified set of
attitudes towards a proposition:

(5) Is it the case that p?
a. Yes (assenting to p)! [strong assertion 7→ +p]
b. No (dissenting from p)! [strong rejection 7→ −p]
c. Perhaps (withholding dissent from p)! [weak assertion 7→ ⊕p]
d. Maybe not (withholding assent to p)! [weak rejection 7→ 	p]



Multilateralism: proof theory and model theory

I In a multilateral proof theory, formulae are decorated with such force
markers (that means in particular that these markers do not embed).

I Model-theoretically, the clauses of the logical constants will be
recursively given in terms of update potentials, while force markers
operate globally as tests on information states (= sets of worlds):

I s |= +A iff s[A] = s strong assertion
I s |= −A iff s[A] = ∅ strong rejection
I s |= ⊕A iff s[A] 6= ∅ or s = ∅ weak assertion
I s |= 	A iff s[A] 6= s or s = ∅ weak rejection

Motivation for distinction force markers vs logical constants

1. Proof-theoretical considerations: the presence of force markers
allows one to satisfy harmony constraints;

2. Ready account of difference in embeddability between perhaps and
might;

3. Elegant treatment of disagreement which nicely incorporates cases
of “weak disagreement”.



Motivation for multilateralism: perhaps vs might
I The might in (6-a) has epistemic modal flavour iff (6-a) is

equivalent to (6-b):

(6) a. It might be raining.
b. Perhaps it is raining.

I But perhaps does not embed under quantifiers, supposition and
conditional antecedents, whereas might does.

(7) a. Every day might be your last.
b. #Every day is perhaps your last.

(8) a. Suppose it might be raining.
b. #Suppose that perhaps it is raining.

(9) a. If it might be raining, I’ll take an umbrella.
b. #If perhaps it is raining, I’ll take an umbrella.

I Proposal (Incurvati and Schlöder 2018):

(10) a. Perhaps p 7→ ⊕p (non-embeddable force marker)
b. It might be p 7→ +♦p (modifies assertive content)

Despite this difference, QEML shows ⊕p and +♦p to be equivalent.



Motivation for multilateralism: disagreement
Classical account

I Two agents disagree on a proposition p if they assign different truth
values to p

Weak disagreement

I Example (11) problematic for a classical account:

(11) A: X or Y will be elected. (Grice 1991)
B: That’s not so; X or Y or Z will be elected.

A and B disagree but there is no relevant p such that A and B would

assign different truth values to p. B does not take ‘X or Y will be elected’

to be false, otherwise B would have said ‘Z will be elected’.

Multilateral account
I Two agents disagree on p if they display conflicting attitudes

towards p. More precisely,

(i) their respective attitudes towards p are of different polarity and
(ii) at least one of the two has a strong attitude (assent or dissent).



Disagreement: Grice’s example
I Analysis of Grice’s example in QEML:

(12) A: X or Y will be elected. 7→ +(x ∨ y)
B: That’s not so; 7→ 	(x ∨ y)

X or Y or Z will be elected. 7→ +(x ∨ y ∨ z)

I There is then a p, namely (x ∨ y), such that A and B’s attitudes
towards p are of a different polarity, and A’s attitude is strong:

I A 7→ +p (strong positive)
I B 7→ 	p (weak negative)

⇒ A and B predicted to disagree

I Two characteristics of QELM:
I Partiality : we can have situations where neither p nor ¬p is

assertable:
I s 6|= +(x ∨ y) s = {wx ,wy ,wz}
I s 6|= +¬(x ∨ y)
I s |= 	(x ∨ y); s |= ⊕(x ∨ y)

I Indeterminacy : a disjunction can be assertable without any of the
disjuncts being assertable:

I s |= +(x ∨ y ∨ z) s = {wx ,wy ,wz}
I s 6|= +x ; s 6|= +y ; s 6|= +z



Disagreement: MacFarlane’s example
I Other cases of disagreement (argued to be problematic for

contextualist or expressivist accounts of epistemic modality) can also
be easily accommodated:

(13) Sally: Joe might be in Boston. (MacFarlane 2014)
George: He can’t be in Boston. I saw him in the hall 5 minutes
ago.

I Analysis of MacFarlane’s example in QEML:

(14) Sally: Joe might be in Boston. 7→ +♦p
George: He can’t be in Boston. 7→ +¬♦p

I QELM verifies the following equivalences:

I +♦p ≡ ⊕p
I +¬♦p ≡ −p

I But then, Sally and George’s attitudes towards p are of a different
polarity, and George’s attitude is strong:

I Sally 7→ ⊕p (weak positive)
I George 7→ −p (strong negative)

⇒ Sally and George predicted to disagree



Motivation for multilateralism: proof theory
I The multilateral approach allows an elegant proof theory in which

Boolean connectives and modals have harmonious introduction and
elimination rules (Incurvati and Schlöder 2018).

I The traditionally problematic cases of ¬ and ♦ are handled as embeddable
counterparts of force operators and therefore can be introduced by
“flip-rules” which trivially satisfy the harmony requirement.

Conjunction

+A +B
(+∧I.)

+(A ∧ B)

+(A ∧ B)
(+∧E.1)

+A

+(A ∧ B)
(+∧E.2)

+B

Negation
⊕A

(	¬I.)
	¬A

	¬A
(	¬E.)

⊕A

	A
(⊕¬I.)

⊕¬A
⊕¬A

(⊕¬E.)
	A

Modals ⊕A
(+♦I.)

+♦A
+♦A

(+♦E.)
⊕A

⊕A
(⊕♦I.)

⊕♦A
⊕♦A

(⊕♦E.)
⊕A



Proof theory: coordination principles
I These rules are complemented by so-called coordination principles, which

govern the interaction of the force markers.

+A 	A
(Rejection)

⊥
+A

(Assertion)
⊕A

Smileian reductios (formalise what we called epistemic reductio)

[+A]
...

⊥(SR1)
	A

[	A]
...

⊥(SR2)
+A

[+A]

+
...

+B ⊕A
(Weak Inference) if (+♦E.) and (⊕♦E.) were not used to derive +B.

⊕B

The restrictions placed on the subderivation in (Weak Inference) ensure that we avoid

the counterintuitive derivations discussed in the introduction. The possibility to state

these restrictions as the exclusion of ♦-Elimination rules is a central upshot of having

“flip-rules” for epistemic modals, and hence of the multilateral approach.



Proof Theory: first order
I We use Read’s (2004) strategy to formulate harmonious rules for identity

and adopt the usual rules for quantification.

I The rules for identity and quantification across conceptual covers differ
from those that stay within one cover (Aloni 2005).

Universal quantification

Shared covers:

+A[yn/xn]
(+∀I.)

if y does not occur free in premisses or undischarged assumptions
used to derive A[y/x]+∀xnA

+∀xnA(+∀E.)
+A[yn/xn]

Mixed covers:

+A[ym/xn]
(+∀I.)

if A is atomic and ym does not occur free in premisses or
undischarged assumptions used to derive A[ym/xn]+∀xnA

+∀xnA(+∀E.) A is atomic
+A[ym/xn]



Proof Theory: first order
Identity

Shared covers:

[+F (xn)]
...

⊕F (yn)

[+F (yn)]
...

⊕F (xn)
(+ =I.nn1 )

if F does not occur in premisses and undischarged
assumptions+xn = yn

+xn = yn +F (xn)
(+ =E.nn1 )

⊕F (yn)

+xn = yn +F (xn)
(+ =E.nn2 )

⊕F (xn)

Mixed Covers:

[+F (xn)]
...

+F (ym)

[+F (ym)]
...

+F (xn)
(+ =I.nm)

if F does not occur in premisses and undischarged
assumptions+xn = ym

+xn = ym +F (xn)
(+ =E.nm1 )

+F (ym)

+xn = ym +F (ym)
(+ =E.nm2 )

+F (xn)



Model theory: models and covers

Language

ϕ := | +A | ⊕A | 	A | ⊥ (1)

where A is a formula of the language of modal predicate logic with
identity and indexed variables xn where n indicates a conceptual cover:

A := Pxn, . . . , xn | xn = xn | ¬A | A ∧ A | ∀xnA | ♦A (2)

Models
A model M = 〈W ,D, I ,C 〉 consists of a (fixed) universe W of possible
worlds, a set D of individuals, a world dependent interpretation function I
for predicates and an ordered set C = 〈C1,C2, ...〉 of conceptual covers
based on (W ,D).

Covers and assignments
A conceptual cover CC based on (W ,D) is a set of functions W → D
such that: ∀w ∈W : ∀d ∈ D : ∃!c ∈ CC : c(w) = d .
An assignment function on (W ,D, I ,C ) is a function g that assigns to
each xn a member of Cn.



Model theory: updates semantics for logical constants

Let M be a model, g be an assignment, and s ⊆W .

s[Px1, . . . , xm]g = {w ∈ s | 〈g(x1)(w), . . . , g(xm)(w)〉 ∈ I (P)(w)}
s[x = y ]g = {w ∈ s | g(x)(w) = g(y)(w)}

s[¬A]g = s \ s[A]g

s[A ∧ B]g = s[A]g ∩ s[B]g

s[♦A]g = s if s[A]g 6= ∅, otherwise empty

s[∀xnA]g =
⋂
c∈Cn

s[A]g [xn/c]

The abbreviated operators are as expected:

s[A ∨ B]g = s[¬(¬A ∧ ¬B)]g = s[A]g ∪ s[B]g

s[�A]g = s[¬♦¬A] = s if s[A]g = s, otherwise empty

s[A→ B]g = s[¬(A ∧ ¬B)]g

s[∃xnA]g = s[¬∀xn¬A]g =
⋃
c∈Cn

s[A]g [xn/c]



Model theory: force markers and logical consequence

Force markers as tests
Let A be a formula, M be a model, s ⊆W and g an assignment.

I M, s, g |= +A iff s[A]g = s.

I M, s, g |= ⊕A iff s[A]g 6= ∅ or s = ∅.
I M, s, g |= 	A iff s[A]g 6= s or s = ∅.
I M, s, g |= ⊥ iff s = ∅.

We can then consider − an abbreviation of +¬.

I M, s, g |= −A iff M, s, g |= +¬A iff s[A]g = ∅.

Logical consequence
Γ |= ϕ iff for all M, s, g s.t. for all ψ ∈ Γ, M, s, g |= ψ ⇒ M, s, g |= ϕ.



Two main results

Theorem 1 (Soundness and Completeness)
Γ |= ϕ iff Γ ` ϕ

Theorem 2 (First order classicality)
If A |= B in classical first-order logic, then +σ[A] ` +σ[B] in QEML.

[For a formula A of classical first-order logic, write σ[A] for the formula of quantified

modal logic that obtains from simultaneously replacing all variables x with xi , where i

is a cover index and all predicates P in A with σ(P) where σ : Pred→ wffQML is a

mapping from predicates into formulae of quantified modal logic such that whenever

P is a predicate of arity n, then σ(P) has exactly n free variables]

I Theorem 2 means that QEML sanctions as valid
I all inferences that are valid in classical first order logic, and
I all inferences obtained from substituting quantified modal logic

formulae (with a fixed cover) into classically valid inferences.

I The converse of Theorem 2 does not hold:
I +Pxn ∧ ♦Qxn ` +♦(Pxn ∧ Qxn) provable in QEML, but not a

substitution-instance of a classically valid inference.



Applications: Epistemic contradictions and non-factivity
We derive the incoherence of epistemic contradictions while preserving
the non-factivity of might and no de re–de dicto collapse

Proposition (Epistemic contradiction)
+(p ∧ ♦¬p) ` ⊥

Proof.

+(p ∧ ♦¬p)
(+∧E.)

+p

+(p ∧ ♦¬p)
(+∧E.)

+♦¬p
(+♦E.)⊕¬p

(⊕¬E.)	p
(Rejection)

⊥

Proposition (Non-factivity of might)
+♦p 6|= +p

Proposition (No de re–de dicto collapse)
6|= +(∀xn♦Pxn → ♦∀xnPxn)

Proof.
Counterex.: s = {wp,w∅} (non-fact) & s = {wPa,wPb} (no-collapse)



Applications: Lottery scenario (Ninan 2018)
Imagine that there is a lottery with only two tickets, a blue ticket
and a red ticket. The tickets are also numbered 1 through 2, but we
don’t know which color goes with which number. We know that the
blue ticket won. But since we don’t know whether the blue ticket is
ticket #1 or ticket #2, we don’t know the number of the winning
ticket. [Ninan 2018, page 1]

(one) Ticket #1 is such that it might be the winning ticket.
∃x(x = 1 ∧ ♦x = w)

(two) Ticket #2 is such that it might be the winning ticket.
∃x(x = 2 ∧ ♦x = w)

(all) Those are all the tickets. ∀x(x = 1 ∨ x = 2)

From these three premises we can then conclude (any): [inference 1]

(any) Any ticket might be the winning ticket.
∀x♦x = w

From (any), (red) seems to follow: [inference 2]

(red) The red ticket is such that it might be the winning ticket.
∃x(r = x ∧ ♦x = w)

but (red) is false in this scenario.



Lottery scenario: analysis
I Inference 1 and inference 2 hold in QEML with a fixed cover:

I1 +∃xn(xn = 1 ∧ ♦xn = w),+∃xn(xn = 2 ∧ ♦xn = w),
+∀xn(xn = 1 ∨ xn = 2) ` +∀xn♦xn = w

I2 +∀xn♦xn = w ,+∃xnxn = r ` +∃xn(xn = r ∧ ♦xn = w)

I The lottery scenario can be modeled by s = {w1,w2}:

w1 7→ 1 2•

w2 7→ 1• 2

I All examples are supported by s when interpreted under the number
cover {ticket1, ticket2};

I All examples are rejected when interpreted under the colour cover
{red-ticket, blue-ticket}.

I But then we have a full explanation of the apparently contrasting
intuitions at the core of Ninan’s puzzle:

I Sentences (one)-(two) are assertable in the lottery scenario because
naturally interpreted under the number cover;

I The negation of (red) is assertable in the lottery scenario because
naturally interpreted under the colour cover;

I (any) assertable under the number cover (as consequence of inference
1), but not under the colour cover (as premise of inference 2).



Embedded epistemic contradictions: quantifiers

I Groenendijk et al (1996) observed that sentences like (15) are
infelicitous:

(15) #Someone who is not hiding in the closet might be hiding in the
closet.
∃x(¬Px ∧ ♦Px)

I Yalcin (2015) (crediting Declan Smithies) pointed out that sentences
like (16) are instead felicitous:

(16) Not everyone who might be sick is sick.
¬∀x(♦Px → Px)

I QEML validates (17) (by first-order classicality):

(17) +∃xn(¬Pxn ∧ ♦Pxn) ≡ +¬∀xn(♦Pxn → Pxn)

I Moreover, +∃xn(¬Pxn ∧ ♦Pxn) is consistent.

I Thus, neither (15) nor (16) are predicted to derive contradictions,
and the infelicity of (15) needs to be explained pragmatically (e.g.,
via properly extending notion of a P-preserving cover).



Embedded epistemic contradictions: disjunction

I Mandelkern (2018) observed that disjunctions of epistemic
contradictions (Wittgenstein disjunctions) are infelicitous:

(18) #Might p and not p or might q and not q.

I But in QEML +(♦p ∧ ¬p) ∨ (♦q ∧ ¬q) is consistent.

I This too is a consequence of classicality: any account which treats
(18) as contradictory by validating (19) must be non-classical:

(19) (♦A ∧ ¬A) ∨ (♦B ∧ ¬B) |= ⊥

I For instantiate A with p and B with ¬p in (19). This gives us

(♦p ∧ ¬p) ∨ (♦¬p ∧ p)

which is truth-conditionally equivalent to ♦p ∨ ♦¬p. So if (19)
holds, we have that

♦p ∨ ♦¬p |= ⊥

This trivialises the ♦.

I Thus, the infelicity of (18) needs to be explained pragmatically.



The reach of classicality

Closet # Someone who is not hiding in the closet might be hiding in the closet.
∃x(¬Px ∧ ♦Px)

Sick Not everyone who might be sick is sick.
¬∀x(♦Px → Px)

Witt-disj # Might p and not p or might q and not q.
(♦p ∧ ¬p) ∨ (♦q ∧ ¬q)

Comparison

Closet Sick Witt-disj
QEML consistent∗ consistent consistent∗

Dynamics incoherent coherent coherent (?)
Mandelkern contradictory contradictory∗ contradictory
∗ pragmatic explanation required

I QELM behaves like classical logic

I Other approaches fail to satisfy classicality

I Dynamics: failure of double negation law (Closet 6= Sick)
I Mandelkern (2018): failure of distributivity (Witt-disj contradictory)



Conclusion

I A fully worked out logic for epistemic modals and quantification
combining

I Multilateral harmonious proof theory
I Information-based model theory with conceptual covers

QEML vs classical logic vs dynamic semantics

I In QEML: partiality and non-classical inferences like

(a) +p ∧ ♦¬p ` ⊥
(b) +Px ∧ ♦Qx ` +♦(Px ∧ Qx)

I and failure of substitutivity with mixed covers:

(c) +∀xn♦Pxn 6|= +∀ym♦Pym
⇒ QEML 6= classical quantified modal logic

I But given classicality: +A ∧ B ≡ +B ∧ A, +∃xA ≡ ¬∀x¬A
⇒ QEML 6= dynamic semantics

I The reach of classicality:
I +(p ∧ ♦¬p) ∨ (q ∧ ♦¬q) 6|= ⊥ Wittgenstein-disjunction
I +∃x(¬Px ∧ ♦Px) 6|= ⊥ Closet



Appendix: Soundness and Completeness

I The only step in the Soundness proof requiring more than
conventional methods is (Weak Inference), due to its restriction. In
brief, one first demonstrates that (Weak Inference) is sound for the
non-modal fragment of the logic. Then, one can show that
whenever there is a derivation satisfying the restrictions, there is a
derivation in which all subformulae starting with a ♦ are replaced by
atoms. Finally, one can show that if such a substituted derivation is
truth-preserving, then so is the original proof, concluding the
soundness proof (see Incurvati and Schlöder 2019 for the
propositional modal logic case).

I For Completeness, note that when + is understood as �, ⊕ as ♦
and 	 as ♦¬, the QEML calculus given here derives the complete
set of axioms for quantified modal logic with conceptual covers given
in Aloni (2005) (except that Aloni’s calculus also includes constant
symbols). It is then easy to see that Aloni’s semantics is equivalent
to the update semantics presented here.



Theorem (First order classicality)
If A |= B in classical first-order logic, then +σ[A] ` +σ[B] in QEML.

[For a formula A of classical first-order logic, write σ[A] for the formula of quantified

modal logic that obtains from simultaneously replacing all variables x with xi , where i

is a cover index and all predicates P in A with σ(P) where σ : Pred→ wffQML is a

mapping from predicates into formulae of quantified modal logic such that whenever

P is a predicate of arity n, then σ(P) has exactly n free variables]

Proof.
One can show that the following are theorems of epistemic multilateral logic:

P1 +((¬A→ ¬B)→ (B → A)).

P2 +((A→ (B → C))→ ((A→ B)→ (A→ C)))

P3 +(A→ (B → A))

Q1 +∀xn.A→ A[yn/xn]

Q2 +∀xn.(A→ B)→ ((∀xn.A)→ (∀xn.B))

Q3 +A→ ∀xn.A where xn is not free in A

I1 +xn = xn

I2 +(xn = yn)→ (A[xn/zn]→ A[yn/zn])

These are Hilbert’s axioms for the classical predicate logic calculus with =. Since

QEML contains modus ponens, this means QEML derives all classically valid inferences

(for a fixed cover). Since A, B,C are arbitrary, this result is closed under σ.
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