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Abstract This article proposes an account of knowing-who constructions within a
generalisation of Hintikka’s (1962) quantified epistemic logic employing the notion
of a conceptual cover (Aloni, 2001). The proposed logical system captures the in-
herent context-sensitivity of knowing-wh constructions (Boër and Lycan, 1985), as
well as expresses non-trivial cases of so-called concealed questions (Heim, 1979).
Assuming that quantifying into epistemic contexts and knowing-who are linked in
the way Hintikka had proposed, the context dependence of the latter will trans-
late into a context dependence of de re attitude ascriptions and this will result in
a ready account of a number of traditionally problematic cases including Quine’s
well-known double vision puzzles (Quine, 1956).
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tions, propositional attitudes, context-dependence

1 Introduction

Hintikka (1962) famously developed the first systematic formal study of the notions
of knowledge and belief. His epistemic modal logic provided new insights into the
properties of epistemic agents and their attitude about the world, its objects and its
states of affairs. One of the most controversial issues in the quantified version of
Hintikka’s epistemic logic (QEL) concerns the possibility of existential generalisa-
tion (EG) from an epistemic context (e.g. Frege, 1892; Quine, 1956; Kaplan, 1969;
Carlson, 1988; Holliday and Perry, 2014). QEL invalidates unrestricted versions of
EG because from 2ψ[t] we cannot always infer ∃x2ψ[x], where 2 stands for an
arbitrary epistemic necessity operator:

EG 6|=QEL φ [t]→∃xφ [x]
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In order for existential generalisation to be applicable to a term t occurring in the
scope of an epistemic modal, t has to denote the same individual in all epistemic al-
ternatives of the relevant agent. The latter condition can be expressed by the formula
∃x2x = t in QEL. The following principle is QEL-valid, if we assume consistency,
positive introspection, and negative introspection:1

EG2 |=QEL ∃x2x = t→ (2φ [t]→∃x2φ [x])

Formulas of the form ∃x2x = t are used by Hintikka as representations of knowing-
who constructions. EG2 says that one can existentially generalise from a term t
in an epistemic context if we have as an additional premise that the relevant agent
knows who t is. Formulas of the form ∃x2φ [x] are used to express de re attitude
reports like “There is someone whom Ralph believes/knows to be a spy”. In Hin-
tikka’s epistemic logic, in order to have a de re attitude about a person one needs to
know who the person is.

The evaluation of knowing-who constructions in ordinary language, however, is
a complex matter, as Hintikka himself acknowledged. In Knowledge and Belief he
wrote:

In practice it is frequently difficult to tell whether a given sentence of the form ‘a knows
who b is’ or ∃xKa(b = x) is true or not. The criteria as to when one may be said to know
who this or that man is are highly variable (Knowledge and Belief, p. 149n).

The goal of the present article is to present an explicit account of this variability
within a generalisation of Hintikka’s epistemic logic employing the notion of a con-
ceptual cover (Aloni, 2001, 2005b). The resulting logical system will allow us to
capture the inherent context-sensitivity of knowing-wh constructions (Boër and Ly-
can, 1985), as well as to express non-trivial cases of so-called concealed questions
(Heim, 1979). Assuming that quantifying into epistemic contexts and knowing-who
are linked in the way Hintikka had proposed, the context dependence of the latter
will translate into a context dependence of de re attitude ascriptions and this will
result in a ready account of a number of traditionally problematic cases including
Quine’s well-known double vision puzzles (Quine, 1956).

2 On the variability of knowing-wh

Imagine the following situation from Aloni (2001). In front of you lie two face-down
cards. One is the Ace of Hearts, the other is the Ace of Spades, but you don’t know
which is which. You have to choose one card: if you choose the Ace of Hearts you
win $10, if you choose the Ace of Spades you lose $10. Now consider the following
sentence:

(1) You know which card is the winning card.

1 If we consider also non-serial, non-transitive and non-euclidean frames, the principle is valid
only if φ does not contain any modal operator.
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Is this sentence true or false in the given situation? On the one hand, the sentence is
true: you know that the Ace of Hearts is the winning card. If someone interested in
the rules of the game asked you “Which card is the winning card?”, you would be
able to answer in an appropriate way. On the other hand, suppose someone interested
in winning the game would ask you “Which card is the winning card?” In this case
you would not be able to answer in the desired way: as far as you know, the winning
card may be the card on the left, but it may just as well be the card on the right.
Therefore you don’t know which card is the winning card (similar “yes and no”
cases were discussed in Boër and Lycan, 1985).

Aloni (2001) proposed the following explanation of this example. Intuitively,
there are two ways in which the cards may be identified in this situation: by their
position (the card on the left, the card on the right) or by their suit (the Ace of
Hearts, the Ace of Spades). Whether (1) is judged true or false seems to depend on
which of these perspectives is adopted. If identification by suit is adopted, as in the
first context discussed above, the sentence is judged true. But if identification by
position is adopted, as in the second context, the sentence is judged false.

Aloni (2001, 2005b) proposed to formalise identification methods by means of
conceptual covers. A conceptual cover is a set of individual concepts (functions
from possible worlds to individuals) that satisfies the following condition: in a con-
ceptual cover, in each world, each individual constitutes the value (or instantiation)
of one and only one concept.

Definition 1 (Conceptual cover). Given a set of possible worlds W and a universe
of individuals D, a conceptual cover CC based on (W,D) is a set of functions W→D
such that:

∀w ∈W : ∀d ∈ D : ∃!c ∈CC : c(w) = d.

Conceptual covers are sets of concepts which exhaustively and exclusively cover
the domain of individuals. In a conceptual cover each individual d is identified by at
least one concept in each world (existence), but in no world is an individual counted
more than once (uniqueness).

It is easy to prove that each conceptual cover and the domain of individuals have
the same cardinality. In a conceptual cover, each individual is identified by one and
only one concept. Different covers constitute different ways of conceiving one and
the same domain.

For the sake of illustration consider again the card scenario described above. In
that scenario there are at least three salient ways of identifying the cards which can
be represented by the following conceptual covers: (2-a) represents identification by
ostension, (2-b) represents identification by name, and (2-c) represents identification
by description (cf. Hintikka, 1972).

(2) a. {on-the-left, on-the-right} [ostension]
b. {ace-of-spades, ace-of-hearts} [naming]
c. {the-winning-card, the-losing-card} [description]

The set of concepts in (3) is not an example of a conceptual cover because it does
not satisfy the conditions formulated in our definition.
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(3) #{on-the-left, ace-of-spades}

Intuitively, (3) does not represent a proper perspective over the relevant domain of
individuals: as far as we know, the card on the left might be the Ace of Spades. If
so: (i) one card (the Ace of Spades) would be counted twice; and (ii) another card
(the Ace of Hearts) would not be identified at all.

When we talk about concepts, we implicitly assume two different levels of ‘ob-
jects’: the individuals (in D) and the ways of referring to these individuals (in DW ).
An essential feature of the intuitive relation between the two levels of the individ-
uals and of their representations is that to one element of the first set correspond
many elements of the second: one individual can be identified in many different
ways. What characterises a set of representations of a certain domain is this cardi-
nality mismatch, which expresses the possibility of considering an individual under
different perspectives which may coincide in one world and not in another. Individ-
uals, on the other hand, do not split or merge once we move from one world to the
other. Now, since the elements of a cover also cannot merge or split (by uniqueness),
they behave like individuals in this sense, rather than representations. On the other
hand, a cover is not barely a set of individuals, but encodes information on how
these individuals are specified. We thus can think of covers as sets of individuals
each identified in one specific way. My proposal is that knowing-wh constructions
involve quantification over precisely this kind of sets. By allowing different con-
ceptual covers to constitute the domain of quantification on different occasions, we
can account for the “yes and no” cases discussed above, without failing to account
for the intuition that knowing-wh constructions involve quantification over genuine
individuals, rather than over ways of specifying these individuals.

In the semantics for quantified epistemic logic presented in the next section the
evaluation of formulas is relativised to a contextual parameter which assigns con-
ceptual covers to variables as their domain of quantification. Building on (Hintikka,
1972), formula (5) will be used as the logical representation of (4).2 The variable zn
in (5) is indexed by a CC-index n ∈ N ranging over conceptual covers. The evalua-
tion of (5) will vary relative to the contextually selected value of n as illustrated in
(6).

(4) You know which card is the winning card.

(5) ∃zn2zn = c

(6) a. False, if n 7→ {on-the-left, on-the-right}
b. True, if n 7→ {ace-of-spades, ace-of-hearts}
c. Trivial, if n 7→ {the-winning-card, the-losing-card}

Differently indexed variables zn and zm will be allowed to range over different
conceptual covers allowing perspicuous representations of traditionally problematic
cases including Quine’s double vision puzzles.

2 Definite descriptions will be translated as (non-rigid) individual constants until section 4.2.
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3 QEL under conceptual covers

3.1 Language

We assume a set C of individual constants, a set P of predicates, and an enumerable
set VN of CC-indexed individual variables. Then we define the terms t and formulas
φ of our language LCC by the following BFN:

t := c | xn (1)
φ := Pt1, . . . , tm | t1 = t2 | ¬φ | φ ∧φ | ∃xnφ |2φ (2)

where c ∈ C , xn ∈ VN , and P ∈P .

The usual abbreviations for∨ (‘disjunction’),→ (‘implication’),↔ (‘bi-implication’),
∀ (‘universal quantifier’) and 3 (‘possibility’) apply.

3.2 Semantics

A CC-model for LCC is a quintuple 〈W,R,D, I,C〉 in which W is a non-empty set
of possible worlds; R is a relation on W ; D is a non-empty set of individuals; I is an
interpretation function which assigns for each w ∈W an element Iw(c) of D to each
individual constant c in C , and a subset Iw(P) of Dm to each m-ary predicate P in
P; and C is a set of conceptual covers over (W,D).

Definition 2 (CC-assignment). Let K = { f ∪ h | f ∈ CN& h ∈ DW VN}. A CC-
assignment g is an element of K satisfying the following condition: ∀n ∈ N:
∀xn ∈ VN : g(xn) ∈ g(n).

A CC-assignment g has in this system a double role: it works on CC-indices and on
indexed variables. CC-indices, n, are mapped to conceptual covers elements of C.
n-indexed individual variables, xn, are mapped to concepts elements of g(n).

Well-formed expressions in L are interpreted in models with respect to a CC-
assignment function g and a world w ∈W .

Definition 3 (Interpretation of Terms).

[[t]]M,w,g = g(t)(w) if t is a variable (3)
[[t]]M,w,g = Iw(t) if t is a constant (4)

Definition 4 (Interpretation of Formulas).

M,w |=g Pt1, ...tn iff 〈[[t1]]M,w,g, ..., [[tn]]M,w,g〉 ∈ Iw(P) (5)
M,w |=g t1 = t2 iff [[t1]]M,w,g = [[t2]]M,w,g (6)
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M,w |=g ¬φ iff not M,w |=g φ (7)
M,w |=g φ ∧ψ iff M,w |=g φ and M,w |=g ψ (8)
M,w |=g ∃xnφ iff ∃c ∈ g(n) : M,w |=g[xn/c] φ (9)

M,w |=g 2φ iff ∀w′ : wRw′ : M,w′ |=g φ (10)

In this semantics quantifiers range over elements of contextually determined con-
ceptual covers, rather than over individuals simpliciter (clause (9) in definition 4).

Remark 1. An essential feature of this semantics is that differently indexed variables
xn and ym may range over different sets of concepts. This will be crucial in a number
of applications discussed later on, see examples (8)-(10), (21), (26) and (34).

Remark 2. It should be stressed however that the denotation [[xn]]M,w,g of a variable
xn with respect to a model M, a world w and an assignment function g is not the
concept g(xn) ∈ g(n), but rather the value g(xn)(w) of the concept g(xn) in world w,
i.e. an individual in D (see clause (3) in definition 3). Thus, variables do not refer
to concepts, but to individuals. However, they do refer in a non-rigid way: different
individuals can be their value in different worlds.

All other semantic clauses are defined as in standard quantified modal logic, as is
the notion of validity. A formula is valid in a CC-model M iff it is true with respect
to all assignments and all worlds in M. A formula is CC-valid iff it is valid in all
CC-models.

Definition 5 (CC-Validity). Let M = 〈W,R,D, I,C〉 be a CC-model for LCC and φ

a formula of LCC.

M |= φ iff ∀w ∈W,∀g : M,w |=g φ

|=CC φ iff ∀M : M |= φ

3.3 Axiomatisation

Aloni (2005b) showed that the semantics presented above can be axiomatised by the
following set of axiom schemata:3

Basic propositional modal system

PC All propositional tautologies.
K 2(φ → ψ)→ (2φ →2ψ)

Quantifiers Recall that φ [t] and φ [t ′] differ only in that the former contains the term
t in one or more places where the latter contains t ′.

3 This axiomatisation taken from Aloni (2005b) is based on the axiom system of modal predicate
logic with identity in Hughes and Cresswell (1996). See in particular chapters 13, 14 and 17.
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EGa φ [t]→∃xnφ [xn] (if φ is atomic)
EGn φ [yn]→∃xnφ [xn]
BFn ∀xn2φ →2∀xnφ

Identity

ID t = t
SIa t = t ′→ (φ [t]→ φ [t ′]) (if φ is atomic)
SIn xn = yn→ (φ [xn]→ φ [yn])

LNIn xn 6= yn→2 xn 6= yn

The axioms EGa and SIa govern existential generalisation and substitutivity of
identicals for arbitrary singular terms in atomic formulae (generalisable to all non-
modal contexts). EGn and SIn cover the case for simple variables for general for-
mulae. Note that EGa expresses the existence condition on conceptual covers and
SIn the uniqueness condition.

Let AXCC be the set of axioms of CC. The set of CC-theorems TCC is the smallest
set such that:

AX AXCC ⊆ TCC
MP If φ and φ → ψ ∈ TCC, then ψ ∈ TCC
∃I If φ → ψ ∈ TCC and xn not free in ψ , then (∃xnφ)→ ψ ∈ TCC
N If φ ∈ TCC, then 2φ ∈ TCC

I will use the standard notation and write `CC φ for φ ∈ TCC.

Theorem 1 (Soundness and Completeness). `CC φ iff |=CC φ .

The next section discusses how the proposed variant of Hintikka’s epistemic logic
can be used to capture the context-sensitivity of knowing-wh constructions observed
by Hintikka and illustrated in section 2. Section 5 will compare CC-validity with
classical QEL-validity, and discuss a number of applications to canonical examples
of propositional attitude reports.

4 Knowing-who and concealed questions

4.1 Context-sensitivity of knowing-wh

Consider again the card situation described in section 2. In front of you lie two face-
down cards. One is the Ace of Hearts, the other is the Ace of Spades. You don’t
know which is which. Furthermore, assume that one of the cards is the winning
card, but you don’t know which. This situation can be modelled as follows (the dot
indicates the winning card):
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w1 7→ ♥ ♠•
w2 7→ ♠ ♥•
w3 7→ ♥• ♠
w4 7→ ♠• ♥

Of the conceptual covers definable over such sets of worlds W and individuals D
three appear to be salient in the described situation, namely:

A = {λw[left]w,λw[right]w}
B = {λw[♥]w,λw[♠]w}
C = {λw[winning]w,λw[losing]w}

These covers correspond to three different ways of identifying individuals, which
are available in such a situation: A identifies the cards by ostension. B identifies the
cards by their name. C identifies the cards by description.

Suppose now that you learn that the Ace of Hearts is the winning card, but still
you don’t know whether it is the card on the left or the one on the right. In this situ-
ation your epistemic state corresponds to the set: {w2,w3}. Consider the following
sentence:

(7) a. You know which card is the winning card.
b. ∃zn2zn = c

On the present approach, sentence (7) obtains different evaluations when interpreted
under different conceptual covers. Under an assignment which maps n to cover A,
i.e., if the operative conceptual cover is the one which cross-identifies objects by
pointing at them, the sentence is false, because there is no unique element of A cor-
responding to the winning card in both your epistemic alternatives: in w2, the card
on the right is the winning card, in w3, the card on the left. In contrast, if our assign-
ment maps n to cover B, i.e., if the operative cover is the one which cross-identifies
objects by their name, then (7) is true, because we can find a concept in B which
corresponds to the winning card in all your epistemic alternatives, namely λw[♥]w.
Finally, if our assignment maps n to cover C, the sentence is again evaluated as
true, but then in a trivial way. Assuming that the contextual selection of a concep-
tual cover is governed by Gricean principles of conversation would rule out such a
resolution in the given scenario.

A second application of the present semantics concerns sentences like (8):

(8) a. You don’t know which card is which.
b. ∀xn∀ym3xn = ym

Since our semantics crucially allows different variables to range over different sets
of concepts, (8-b) can be used to represent the total ignorance of the sort expressed
by (8-a). These cases were problematic in standard QEL. Formula (8-b) could not
serve as a representation of (8-a) there because it would have entailed that your
epistemic state is inconsistent (if |D|> 1). One way to represent in QEL what (8-a)
expresses is perhaps the following:
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(9) ∀x3x = a1∧ . . .∧∀x3x = an

This representation however cannot be generalised to the infinite case and depends
on the availability of individual constants of the relevant kind. The CC-semantics
instead offers us a principled way to express (8-a), which does not use constants
and generalises to all cases. The following can also be expressed in the present
semantics:

(10) a. You know which card is which.
b. ∀xn∃ym2xn = ym

Again since xn and ym can range over different conceptual covers, formula (10-b),
which in classical quantified modal logic is a logical validity, can here be used to
express a contingent fact.4

As a third application, notice that the proposed semantics gives a ready account
of the following sort of case (Boër and Lycan 1986):

(11) Alphonse, you don’t know who you are: you are the rightful heir to the
Albanian throne.

Again, these kind of examples were problematic for Hintikka’s original theory. The
standard logical rendering of the first clause in (11) is as follows:

(12) a. You don’t know who you are.
b. ¬∃x2you = x

Assuming with Kaplan that indexicals like you are rigid designators, example (12)
was wrongly predicted to require for its truth that Alphonse failed to know a tau-
tology. On the present analysis, instead, the intended meaning of (11) can be easily
captured by letting x range over elements of a descriptive cover with the concept
‘the rightful heir to the Albanian throne’ as one of its elements.

It is however important to stress again that given the constraints we have put on
conceptual covers, quantification under conceptual cover functions logically exactly
the same as quantification over individuals (Aloni, 2005b). An element of a concep-
tual cover stands for an individual specified in a determined way, rather than for a
way of specifying an individual.

The next section provides independent motivation for a conceptual cover analysis
looking at the case of concealed questions.

4 Notice that (8-b) above is stronger than the negation of (10-b) (if |D|> 2). Embedded questions
have been observed to exhibit so-called homogeneity effects (Križ, 2015): “a knows who φ” is
intuitively true if a is fully informed about who φ , whereas its negation “a doesn’t know who φ”
conveys that a has pretty much no idea who φ . A compositional account of the semantics of the
English examples would have to account for these facts (among others). Such a compositional
analysis, however, is outside the scope of this article.
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4.2 Concealed questions

A concealed question (henceforth CQ) is a noun phrase naturally read as an identity
question. As an illustration, consider the italicised nouns in the following exam-
ples:5

(13) a. John knows the price of milk.
b. John knows what the price of milk is.

(14) a. Mary discovered the murderer of Smith.
b. Mary discovered who the murderer of Smith is.

(15) a. They revealed the winner of the contest.
b. They revealed who the winner of the contest was.

Concealed questions arise not only with definite determiner phrases, but also with
indefinite and quantified ones, as illustrated in (16):

(16) a. John knows a doctor who could help you. (Frana 2006)
b. John knows every phone number. (Heim 1979)

Heim (1979) further discussed structurally more complex cases like (17) and ob-
served that such CQ-containing CQs (CCQs) are ambiguous between two readings,
which are generally referred to in the literature as Reading A and Reading B:

(17) John knows the capital that Fred knows.
a. Reading A: There is exactly one country x such that Fred can name x’s

capital; and John can name x’s capital as well.
b. Reading B: John knows which country x is such that Fred can name

x’s capital (although John may be unable to name x’s capital himself).

Suppose Fred knows that the capital of Italy is Rome. Then on Reading A, (17)
entails that John also knows that the capital of Italy is Rome. On Reading B, (17)
lacks this entailment. It only follows that John knows that Fred can name the capital
of Italy.

5 It is well known that English know also allows acquaintance readings:

(i) Mary knows the capital of Italy.
a. Acquaintance reading: Mary is acquainted with Rome.
b. Concealed Question reading: Mary knows what the capital of Italy is.

In languages like Italian and Dutch, where epistemic know and acquaintance know are lexically
distinct, the CQ reading can be forced by using the verb for epistemic know (sapere in Italian and
weten in Dutch), as shown by (ii) for Italian, which does not allow acquaintance interpretations.

(ii) Maria
Maria

sa
knowsEPI

la
the

capitale
capital

dell’Italia.
of-the-Italy

‘Mary knows what the capital of Italy is’
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A clarification of the logical forms of these sentences turns out not to be a trivial
task. Heim in her seminal article considered three possible logical analyses for the
basic examples in (13)-(15) but none of these could be extended to a proper analysis
of both the cases illustrated in (16) and (17).

In what follows we show how a unified account of the interpretation of definite,
indefinite and quantified CQs and of Heim’s CCQ-ambiguity can be given using the
epistemic logic introduced in the previous section.

The main idea consists in analysing constructions like “a knows α”, where α is
a concealed question, using Hintikka’s logical rendering of the semantically equiva-
lent “a knows what/who α is” and then interpreting the resulting formula using the
epistemic logic under conceptual covers presented in the previous section:6

(18) a. a knows α

b. ∃yn2yn = α

In the following illustrations we make use of multi-agent knowledge operators Ka
for agent a, interpreted as the necessity modal operator 2 from above and of the
following abbreviation: t = ιyn.φ [yn] stands for ∃yn∀zn((φ [zn]↔ yn = zn)∧yn = t).

Illustrations

First consider a ‘plain’ definite CQ. (19-a) can be analysed using Hintikka’s logical
rendering of the semantically equivalent John knows what the capital of Italy is.

(19) a. John knows the capital of Italy.
b. ∃xnK jxn = ιyn.CAPITAL-OF-ITALY(yn)

Formula (19-b) is then interpreted according to the semantics given in the previous
section. The intended reading is obtained if xn is taken to range over the naming
cover:

(20) n→ {Berlin, Rome, . . . }

Example (21) illustrates our analysis of quantified CQs:

(21) a. John knows every European capital.
b. ∀xn(EUROPEAN-CAPITAL(xn)→∃zmK jxn = zm)

The most natural cover resolution for n and m here is the following:

(22) a. n→ {the capital of Germany, the capital of Italy, . . .}
b. m→ {Berlin, Rome, . . . }

The sentence is then predicted to be true iff for each European country John can
name the capital of that country. Notice that contrary to the previous example, the

6 Aloni (2008) also uses conceptual covers to account for concealed questions, but there concealed
questions are analysed as questions employing Groenendijk and Stokhof’s (1984) partition theory.
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quantified case crucially requires that xn and zm range over two different covers,
otherwise (21-b) would be trivially true (i.e., it would denote a tautology in every
world, relative to any assignment function).

Finally, we turn to Heim’s CCQ ambiguity. As we mentioned above, Heim (1979)
observed that sentences like (23) have the two readings paraphrased in (24) and (25).

(23) John knows the capital that Fred knows.

(24) Reading A: There is exactly one country x such that Fred can name x’s
capital; and John can name x’s capital as well.

(25) Reading B: John knows which country x is such that Fred can name x’s
capital (although John may be unable to name x’s capital himself).

On the present account, Heim’s ambiguity can be easily represented as a scope am-
biguity (CC-indices are indicated only on the first occurrence of a variable for better
readability):

(26) John knows the capital that Fred knows.
A ∃xn(x = ιyn.(CAP(y)∧∃zmK f z = y)∧∃vmK j v = x)
B ∃xnK j(x = ιyn.(CAP(y)∧∃zmK f (z = y))

The intended readings are captured by assuming the following resolution for the
relevant CC-indices:

(27) a. n→ {the capital of Germany, the capital of Italy, . . .}
b. m→ {Berlin, Rome, . . .}

On this resolution, Reading A says that there is a unique capital which Fred can
identify by name (the first conjunct in (26)), and that John can identify that capital
by name as well (the second conjunct in (26)). On Reading B, John can identify “the
capital that Fred knows” with one of the individual concepts in the conceptual cover
associated with n. That is, there is some country x such that “the capital that Fred
knows” and “the capital of x” denote the same city in all worlds in John’s epistemic
state.

5 Comparison with classical quantified epistemic logic and the
logic of attitude reports

In this section, we compare quantified epistemic logic under conceptual covers (CC)
with classical quantified epistemic logic (QEL). Building on results from Aloni
(2005b) we show that if there are no shifts of conceptual covers, CC is just clas-
sical QEL: the two semantics turn out to define exactly the same notion of validity.
Once we allow shifts of covers though, a number of arguably problematic princi-
ples which were valid in QEL cease to be valid in CC. All these principles involve
variables occurring free in the scope of some epistemic operator. Section 5.3 pro-
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vides motivation for the failure of these principles using canonical examples of de
re attitude reports.

5.1 QEL-validity

We start by defining a classical semantics for the language under consideration. A
QEL-model for LCC is a quadruple 〈W,R,D, I〉 where W , R, D and I are as above.
Well-formed expressions are interpreted in models with respect to classical QEL-
assignment functions g ∈ DV and world w ∈W . With respect to the semantics de-
fined in section 3.2 we only have to adjust the clauses for variables in Definition 3
and for the existential quantifier in Definition 4.

Definition 6 (QEL-Interpretation of variables). [[xn]]M,w,g = g(xn)

Definition 7 (QEL-Interpretation of quantification).

M,w |=g ∃xnφ iff ∃d ∈ D : M,w |=g[xn/d] φ

A formula is valid in a QEL-model M iff it is true with respect to all QEL-
assignments and all worlds in M. A formula is QEL-valid iff it is valid in all QEL-
models.

Definition 8 (QEL-Validity). Let M = 〈W,R,D, I〉 be a QEL-model for LCC and φ

a formula of LCC.

M |= φ iff ∀w ∈W,∀g ∈ DV : M,w |=g φ

|=QEL φ iff for all QEL-models M : M |= φ

5.2 CC-validity vs QEL-validity

Let a CC-model for LCC containing a single conceptual cover be a classical CC-
model, i.e. a CC-model M = 〈W,R,D, I,C〉 is classical iff |C| = 1. A formula of
LCC is classically CC-valid iff it is valid in all classical CC-models.

Definition 9 (Classical CC-validity). Let φ be a wff in LCC.

|=CCC φ iff for all CC-models M : M is classical ⇒M |=CC φ

The first result of this section is that if we just consider classical CC-models, the
logic of conceptual covers does not add anything to ordinary quantified epistemic
logic. Classical CC-validity is just ordinary QEL-validity. This result is expressed
by the following proposition. Full proof of this result can be found in Aloni (2005b).



14 Maria Aloni

Proposition 1. Let φ be a formula in LCC.

|=CCC φ iff |=QEL φ

One direction of the proof of this proposition follows from the fact that given
a classical CC-model M, we can construct a corresponding QEL-model M′ that
satisfies the same LCC formulas as M. Let M be 〈W,R,D, I,{CC}〉. We define the
corresponding QEL-model M′ = 〈W ′,R′,D′, I′〉 as follows. W ′ = W , R′ = R, D′ =
CC. For I′ we proceed as follows:

(i) ∀〈c1, ...,cn〉 ∈CCn, w ∈W , P ∈P:

〈c1, ...,cn〉 ∈ I′(P)(w) iff 〈c1(w), ...,cn(w)〉 ∈ I(P)(w);

(ii) ∀c ∈CC, w ∈W , a ∈ C :

I′(a)(w) = c iff I(a)(w) = c(w).

In our construction, we take the elements of the conceptual cover in the old model to
be the individuals in the new model, and we stipulate that they do, in all w, what their
instantiations in w do in the old model. Clause (i) says that a sequence of individuals
is in the denotation of a relation P in w in the new model iff the sequence of their
instantiations in w is in P in w in the old model. In order for clause (ii) to be well-
defined, it is essential that CC is a conceptual cover, rather than an arbitrary set of
concepts. In M′, an individual constant a will denote in w the unique c in CC such
that I(a)(w) = c(w). That there is such a unique c is guaranteed by the uniqueness
condition on conceptual covers. Aloni (2005b) proves the following theorem which
shows that this construction works.

Theorem 2. Let g be a CC-assignment and h a QEL-assignment such that g = h∪
{〈n,CC〉 | n ∈ N}. Let w be any world in W and φ any formula in LCC. Then

M,w,g |=CC φ iff M′,w,h |=QEL φ .

Now it is clear that if a classical CC-model M and an ordinary QEL-model M′

correspond in the way described, then the theorem entails that any formula in LCC
is CC-valid in M iff it is QEL-valid in M′. Thus, given a classical CC-model, we
can define an equivalent QEL-model, but also given an QEL-model, we can define
an equivalent classical CC-model 〈W,R,D, I,{CC}〉 by taking CC to be the ‘rigid’
cover {c ∈ DW | ∃d.∀w.c(w) = d}. This suffices to prove Proposition 1.

A corollary of Proposition 1 is that CC-validity is weaker than QEL-validity.
|=CC φ obviously implies |=CCC φ which by Proposition 1 implies |=QEL φ .

Corollary 1. If |=CC φ , then |=QEL φ .

A further consequence of Proposition 1 is that we can define interesting frag-
ments of LCC which behave classically, that is, formulas in these fragments are
CC-valid iff they are valid in QEL. This is done in the following propositions.
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Proposition 2. Let L n
CC be a restriction of LCC containing only variables indexed

by n, and φ ∈L n
CC. Then |=CC φ iff |=QEL φ .

proof: Suppose 6|=CC φ for φ ∈L n
CC. This means for some CC-model M = 〈W,R,D,C, I〉

and some w,g: M,w 6|=g φ . Let M′ = 〈W,R,D,{g(n)}, I〉. Since φ can only contain
variables indexed by n, M′,w 6|=g φ . M′ is obviously a classical model. This means
6|=CCC φ which by Proposition 1 implies 6|=MPL φ . Corollary 1 delivers the second
half of Proposition 2. 2

Proposition 3. Let LPL be the non-modal fragment of LCC, and φ ∈ LPL. Then
|=CC φ iff |=QEL φ .

proof: Suppose 6|=CC φ . This means for some CC-model M = 〈W,R,D,C, I〉 and
some w,g: M,w 6|=g φ . Let M′ = 〈W ′,R′,D,C′, I′〉, be a sub-model of M such that
W ′ = {w}. Since φ is non-modal M′,w 6|=g φ . Since |W ′| = 1, |C′| = 1, i.e. M′ is
a classical model. This means 6|=CCC φ which by Proposition 1 implies 6|=MPL φ .
Again Corollary 1 delivers the other direction of the proof. 2

The following proposition, which is a novel result with respect to (Aloni, 2005b),
shows that conceptual covers only play a role in cases of ‘quantifying in’, i.e., when
we have a variable occurring free in the scope of a modal operator.

Let φ be a formula in LCC. Then φ is closed iff no variable occurs free within the
scope of a modal operator in φ . The following proposition states that in such cases
the interpretation of φ is independent of the conceptual cover parameter irrespective
of the number of modal operators or CC-indices the formula contains.

Proposition 4. Let φ be a closed formula in LCC. Then |=CC φ iff |=QEL φ .

One direction of the proof of this proposition follows from Corollary 1. The other
direction follows from the fact that given a CC-model M = 〈W,R,D, I,C〉, a world
w ∈W and a CC-assignment g, we can define a corresponding QEL-model M′ =
〈W,R,D, I〉, and QEL-assignment hg,w, defined as the element of DVN such that for
all v ∈ VN ,h(v) = g(v)(w), for which we can prove the following theorem for all
closed φ :

Theorem 3.

M,w,g |=CC φ iff M′,w,hg,w |=QEL φ .

So whenever we can invalidate a closed φ in CC we will be able to invalidate φ in
QEL as well (see appendix for proof).

5.3 On the logic of attitude reports

As a consequence of Proposition 3, our CC semantics validates the principles of
existential generalisation and substitutivity of identicals for non-modal formulas,
since they are validated in QEL:
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SI1 |=CC t = t ′→ (φ [t]→ φ [t ′]) (if φ is non-modal)
EG1 |=CC φ [t]→∃xnφ [xn] (if φ is non-modal)

Note that the validity of EG1 crucially relies on the existence condition on concep-
tual covers, which guarantees that whatever denotation, d = [[t]]M,g,w, a term t is as-
signed in w, there is a concept c in the operative cover such that c(w) = d = [t]M,g,w.

Substitutivity of identicals and existential generalisation cease to hold as soon as
we introduce modal operators. By Corollary 1, SI and EG are invalidated in CC,
being invalid in QEL:

SI 6|=CC t = t ′→ (φ [t]→ φ [t ′])
EG 6|=CC φ [t]→∃xnφ [xn]

The failure of SI allows us to handle, as in (Hintikka, 1962), the canonical failures
of substitutivity of identicals in the scope of propositional attitudes:

(28) a. Hesperus is Phosphorus. The Babylonians knew that Hesperus is Hes-
perus. 6⇒ The Babylonians knew that Hesperus is Phosphorus.

b. 6|=CC t = t ′→ (2t = t→2t = t ′)

The failure of EG allows us to preserve important aspects of Hintikka’s orig-
inal account of the contrast between de re and de dicto attitude ascription, under
the assumption that the pragmatic resolution of CC-indices is governed by general
Gricean conversational principles (see Aloni, 2005a, for a formalisation of such a
pragmatic theory):

(29) a. Ralph believes that the shortest spy is a spy 6⇒Ralph believes someone
to be a spy. (Quine, 1956; Kaplan, 1969)

b. 6|=CC 2Pt→∃xn2Pxn

In Hintikka’s semantics, existential generalisation can be applied to t only if t is a
rigid designator. The present semantics is more liberal: ∃xn2SPY(xn) follows from
2SPY(THE-SHORTEST-SPY), if we map n into a cover which includes the individ-
ual concept λw[[THE-SHORTEST-SPY]]w. Such a resolution however is blocked in
ordinary conversations because it would involve a violation of Grice’s maxim of
Quantity.

In contrast to what happens in Hintikka’s QEL, not only SI and EG are invali-
dated in the present semantics, but also SIv and EGv.

SIv 6|=CC xn = ym→ (φ [xn]→ φ [ym])
EGv 6|=CC φ [ym]→∃xnφ [xn]

From the failure of SIv, it follows that also LIv is not valid in CC.

LIv 6|=CC xn = ym→2 xn = ym

From the failure of EGv, it follows that also the principle of renaming PR is not
generally valid in CC:
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PR 6|=CC ∃xn2P(xn)↔∃ym2P(ym)

These related invalidities allow us to model a number of cases of mistaken iden-
tity that were problematic in Hintikka’s original semantics. Recall Quine’s Ralph
who believes of one man that he is two distinct individuals, because he has seen
him in two different circumstances, once with a brown hat, once at the beach. In
Quine’s story Ralph suspects that the man with the brown hat is a spy, while he
thinks that the man seen at the beach is rather a pillar of the community. “Can we
say of this man (Bernard J. Ortcutt to give him a name) that Ralph believes him to be
a spy?” (Quine, 1956, p. 179). In the CC-semantics described above, we can give a
reasonable answer to Quine’s question, namely, “It depends”. The question receives
a negative or a positive answer relative to the way in which Ortcutt is specified. The
following formula is true under a CC-assignment that maps xn to a concept c1 cor-
responding to “the man with the brown hat” and false under a CC-assignment that
maps xn to a concept c2 corresponding to “the man on the beach”.

(30) 2Sxn

Notice that c1 and c2 cannot be part of one and the same conceptual cover because
they assign one and the same individual to the actual world, so uniqueness would
be violated. As a consequence of this, the following two sentences can both be true
even in a serial model, but only if n and m are assigned different conceptual covers.

(31) a. Ralph believes Ortcutt to be a spy.
b. ∃xn(xn = o∧2Sxn)

(32) a. Ralph believes Ortcutt not to be a spy.
b. ∃xm(xm = o∧2¬Sxm)

This is intuitively reasonable: one can accept these two sentences without drawing
the conclusion that Ralph’s beliefs are inconsistent, only if one takes into consider-
ation the two different perspectives under which Ortcutt can be considered. Further-
more, the fact that a shift of cover is required in this case explains the never ending
puzzling effect of Quine’s story. After reading Quine’s description of the facts, both
covers (the one identifying Ortcutt as the man with the brown hat, the other identi-
fying Ortcutt as the man on the beach) are equally salient, and this causes bewilder-
ment in the reader who has to choose one of the two in order to interpret each de re
sentence.

From (31) and (32) we cannot infer the following (for i ∈ {n,m}):

(33) ∃xi(xi = o∧2(Sxi∧¬Sxi))

which would charge Ralph with contradictory beliefs. Yet, we can infer (34) which
does not carry such a charge:

(34) ∃xn(xn = o∧∃ym(o = ym∧2(Sxn∧¬Sym)))
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Note finally that substitutivity of identicals and existential generalisation are al-
lowed when applied to variables with a uniform index. It is easy to see that the
present semantics validates the following schemes:

SIn |=CC xn = yn→ (φ [xn]→ φ [yn])
EGn |=CC φ [yn]→∃xnφ [xn]

The validity of SIn crucially relies on the uniqueness condition on conceptual cov-
ers. From SIn, but also as a consequence of Proposition 2, we can derive LIn, which
guarantees that the elements in our domains of quantification behave more like in-
dividuals than representations:

LIn |=CC xn = yn→2xn = yn

In this section we have seen that quantified epistemic logic under conceptual cov-
ers is essentially richer than classical QEL because in the former we can shift from
one cover to another, and these shifts can affect evaluation of formulas containing
variables occurring free in the scope of some epistemic operator. If we stick to one
cover, or we restrict attention to closed formulas, then not only do CC and QEL
define the same notion of validity (Proposition 1 and Proposition 4), but also, and
maybe more significantly, the same notion of truth (Theorem 2 and Theorem 3). We
have already seen the intuitive consequences of this result. On the one hand, in or-
dinary situations in which the method of identification is kept constant, CC behaves
exactly like QEL and inherits its desirable properties (for example in relation to the
shortest spy example). On the other hand, the system is flexible enough to account
for extraordinary situations as well, such as Quine’s double vision situations, where
multiple covers are operative.

6 Conclusion

Hintikka taught us how to analyse knowing-who constructions in quantified epis-
temic logic: a knows who t is (∃x2x = t) iff t denotes one and the same individual
in all of a’s epistemic alternatives. This article has proposed the following generali-
sation of Hintikka’s analysis: a knows whon t is (∃xn2xn = t) iff t can be identified
by one and the same concept in the contextually selected cover n in all of a’s epis-
temic alternatives.

This generalisation allows a ready account of (i) the context-sensitivity of knowing-
who constructions (Boër and Lycan, 1985), acknowledged by Hintikka himself; (ii)
quantified and embedded cases of concealed questions (Heim, 1979) and (iii) canon-
ical problematic examples of failure of substitutivity of identicals in attitude reports
(Frege, 1892; Quine, 1956; Kaplan, 1969).
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Appendix

Let M = 〈W,R,D, I,C〉 be a CC-model and M′ = 〈W,R,D, I〉 be the corresponding
classical QEL-model. And given a CC-assignment g and a world w ∈W , let hg,w be
an element of DVN such that for all v ∈ VN : h(v) = g(v)(w). We prove the following
theorem for any closed φ in LCC:

Theorem 3.

M,w,g |=CC φ iff M′,w,hg,w |=QEL φ .

Proof: The proof is by induction on the construction of φ . We start by showing that
the following holds for all terms t:

(A) [[t]]M,w,g = [[t]]M′,w,hg,w .

Suppose t is a variable. Then [[t]]M,w,g = g(t)(w). By definition of hg,w, g(t)(w) =
hg,w(t), which means that [[t]]M,w,g = [[t]]M′,w,hg,w . Suppose now t is a constant. Then
[[t]]M,w,g = I(t)(w) = [[t]]M′,w,hg,w . We can now prove the theorem for atomic formu-
lae.

Suppose φ is Pt1, ..., tn. Now M,w,g |=CC Pt1, ..., tn holds iff (a) holds:

(a) 〈[[t1]]M,w,g, ..., [[tn]]M,w,g〉 ∈ I(P)(w).

By (A), (a) holds iff (b) holds:

(b) 〈[[t1]]M′,w,hg,w , ..., [[tn]]M′,w,hg,w〉 ∈ I(P)(w),

which means that M′,w,hg,w |=QEL Pt1, ..., tn.

Suppose now φ is t1 = t2. M,w,g |=CC t1 = t2 holds iff (c) holds:

(c) [[t1]]M,w,g = [[t2]]M,w,g.

By (A) above, (c) holds iff (d) holds:

(d) [[t1]]M′,w,hg,w = [[t2]]M′,w,hg,w ,

which means that M′,w,hg,w |=QEL t1 = t2.

Suppose now φ is 2ψ . M,w,g |=CC 2ψ holds iff (e) holds:

(e) ∀w′ ∈W : wRw′ : M,w′,g |=CC ψ .

By induction hypothesis, (e) holds iff (f) holds:

(f) ∀w′ ∈W : wRw′ : M′,w′,hg,w′ |=QEL ψ .

And (f) holds iff (g) holds:

(g) M′,w,hg,w′ |=QEL 2ψ .
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Since ψ does not contain any free variable, (g) is equivalent to M′,w,hg,w |=QEL 2ψ .

Suppose now φ is ∃xnψ . M,w,g |=CC ∃xnψ holds iff (h) holds:

(h) ∃c ∈ g(n) : M,w,g[c/xn] |=CC ψ .

By induction hypothesis, (h) holds iff (i) holds:

(i) ∃c ∈ g(n) : M′,w,hg[xn/c],w |=QEL ψ .

By definition hg[xn/c],w = hg,w[xn/c(w)], and c(w)∈D. But then (i) holds iff (j) holds:

(j) ∃d ∈ D : M′,w,hg,w[xn/d] |=QEL ψ ,

which means M′,w,hg,w |=QEL ∃xnψ .

The induction for ¬ and ∧ is immediate. 2
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