NØthing is Logical

Maria Aloni ILLC & Philosophy University of Amsterdam M.D.Aloni@uva.nl Slides: https://www.marialoni.org/resources/NYU23.pdf

The New York Philosophy of Language Workshop NYU, 16 October 2023

NØthing is logical (Nihil)

- Goal of the project: a formal account of a class of natural language inferences which deviate from classical logic
- Common assumption: these deviations are not logical mistakes, but consequence of pragmatic enrichment
- Strategy: develop *logics of conversation* which model next to literal meanings also pragmatic factors and the additional inferences which arise from their interaction
- Novel hypothesis: neglect-zero tendency as crucial pragmatic factor
- Main conclusion: deviations from classical logic consequence of pragmatic enrichments albeit not of the canonical Gricean kind

Nihil website

```
https://projects.illc.uva.nl/nihil/
```

Nihil team

MA, Anttila, Brinck Knudstorp, Degano, Klochowicz & Ramotowska (+ more collaborators including Sbardolini)

Non-classical inferences

Free choice (FC)

- (1) $\diamondsuit(\alpha \lor \beta) \rightsquigarrow \diamondsuit \alpha \land \diamondsuit \beta$
- (2) Deontic FC inference
 - a. You may go to the beach or to the cinema.
 - b. \rightsquigarrow You may go to the beach *and* you may go to the cinema.
- (3) Epistemic FC inference
 - a. Mr. X might be in Victoria or in Brixton.
 - b. \rightsquigarrow Mr. X might be in Victoria and he might be in Brixton.

Ignorance

- (4) The prize is in the attic or in the garden \rightsquigarrow speaker doesn't know where
- (5) ? I have two or three children.
 - In the standard approach, ignorance inferences are conversational implicatures
 - Less consensus on FC analysed as conversational implicatures; grammatical implicatures; semantic entailments; ...

[Kamp 1973]

[Grice 1989]

[Zimmermann 2000]

- ▶ FC and ignorance inferences are $[\neq \text{semantic entailments}]$
 - ▶ Not the result of Gricean reasoning $[\neq \text{conversational implicatures}]$
 - Not the effect of applications of covert grammatical operators

```
\neq scalar implicatures]
```

 But rather a consequence of something else speakers do in conversation, namely,

NEGLECT-ZERO

when interpreting a sentence speakers create structures representing reality¹ and in doing so they systematically neglect structures which verify the sentence by virtue of an empty configuration (*zero-models*)

Tendency to neglect zero-models follows from the difficulty of the cognitive operation of evaluating truths with respect to empty witness sets [Nieder 2016, Bott et al, 2019]

¹Johnson-Laird (1983) Mental Models. Cambridge University Press.

Novel hypothesis: neglect-zero Illustrations

- (6) Every square is black.
 - a. Verifier: $[\blacksquare, \blacksquare, \blacksquare]$
 - b. Falsifier: $[\blacksquare, \Box, \blacksquare]$
 - c. Zero-models: []; $[\triangle, \triangle, \triangle]$; $[\diamondsuit, \blacktriangle, \diamondsuit]$; $[\blacktriangle, \bigstar, \bigstar]$
- (7) Less than three squares are black.
 - a. Verifier: $[\blacksquare, \Box, \blacksquare]$
 - b. Falsifier: $[\blacksquare, \blacksquare, \blacksquare]$
 - c. Zero-models: []; $[\triangle, \triangle, \triangle]$; $[\diamond, \blacktriangle, \diamond]$; $[\blacktriangle, \blacktriangle, \blacktriangle]$; $[\Box, \Box, \Box]$
 - Cognitive difficulty of zero-models confirmed by experimental findings from number cognition and has been argued to explain
 - the special status of 0 among the natural numbers [Nieder, 2016]
 - why downward-monotonic quantifiers are more costly to process than upward-monotonic ones (*less* vs *more*) [Bott et al., 2019]
 - existential import & other principles operative in Aristotelian logic (every A is B ⇒ some A is B; not (if not A then A)) [MA, 2023]
 - Core idea: tendency to neglect zero-models, assumed to be operative in ordinary conversation, explains FC and related inferences

Novel hypothesis: neglect-zero Illustrations

- (8) It is raining.

 - b. Falsifier: [☆☆☆]
 - c. Zero-models: none
- (9) It is snowing.
 - a. Verifier: [****]
 - b. Falsifier: [^{', , , , , ,} , , , , , , , , , ,];
 - c. Zero-models: none
- (10) It is raining or snowing.

 - b. Falsifier: [^{女女女}]
 - c. Zero-models: [/////////]; [*****]
 - Two models in (10-c) are zero-models because they verify the sentence by virtue of an empty witness for one of the disjuncts
 - Ignorance effects arise because such zero-models are cognitively taxing and therefore disregarded

Comparison with competing accounts

	Ignorance inference	FC inference	Scalar implicature
Neo-Gricean	reasoning	reasoning	reasoning
Grammatical view	debated	grammatical	grammatical
Nihil	neglect-zero	neglect-zero	—

Ignorance, free choice and scalar implicatures

- Scalar implicatures compatible with ignorance and free choice:
 - (11) Pat ate the cake or the ice-cream \rightsquigarrow
 - a. Speaker doesn't know which
 - b. P didn't eat both

(ignorance) (scalar implicature)

- (12) Pat may eat the cake or the ice-cream \rightsquigarrow a. Pat may choose which $\Diamond \alpha \land \Diamond \beta$ (free choice) b. Pat may not eat both $\neg \Diamond (\alpha \land \beta)$ (scalar implicature)
- Ignorance and free choice are incompatible

BSML: teams and bilateralism

Team semantics: formulas interpreted wrt a set of points of evaluation (a team) rather than single ones [Väänänen 2007; Yang & Väänänen 2017]
 Classical vs team-based modal logic

Classical modal logic:

 $[M = \langle W, R, V \rangle]$

(truth in worlds)

 $M, w \models \phi$, where $w \in W$

Team-based modal logic:

$$M, t \models \phi$$
, where $t \subseteq W$

Bilateral state-based modal logic (BSML)

• Teams \mapsto information states [Dekker93; Groenendijk⁺96; Ciardelli⁺19]

Assertion & rejection conditions modeled rather than truth

$$M, s \models \phi$$
, " ϕ is assertable in s", with $s \subseteq W$

 $M, s = \phi$, " ϕ is rejectable in s", with $s \subseteq W$

In BSML inferences relate speech acts rather than propositions and therefore might diverge from classical semantic entailments

Neglect-zero effects in BSML: split disjunction

A state s supports a disjunction φ ∨ ψ iff s is the union of two substates, each supporting one of the disjuncts

 $\textit{M}, \textit{s} \models \phi \lor \psi \text{ iff there are } \textit{t}, \textit{t}': \textit{t} \cup \textit{t}' = \textit{s} \And \textit{M}, \textit{t} \models \phi \And \textit{M}, \textit{t}' \models \psi$

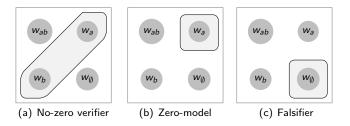
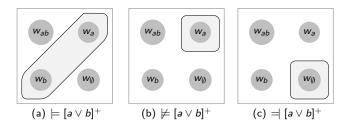


Figure: Models for $(a \lor b)$.

- {w_a} verifies (a ∨ b) by virtue of an empty witness for the second disjunct, {w_a} = {w_a} ∪ Ø [→ zero-model]
- Main idea: define neglect-zero enrichments, []⁺, whose core effect is to rule out such zero-models
- Implementation: []⁺ defined using NE (s ⊨ NE iff s ≠ Ø), which models neglect-zero in the logic

Neglect-zero effects in BSML: enriched disjunction

s supports an enriched disjunction [φ ∨ ψ]⁺ iff s is the union of two non-empty substates, each supporting one of the disjuncts

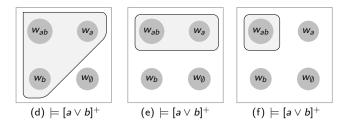


An enriched disjunction requires both disjuncts to be live possibilities

- (14) It is raining or snowing \sim It might be raining and it might be snowing (epistemic) possibility
- Main result: in BSML []⁺-enrichment has non-trivial effect only when applied to *positive* disjunctions
 - \mapsto we derive $_{\rm FC}$ and related effects (for pragmatically enriched formulas);
 - $\mapsto\,$ pragmatic enrichment vacuous under single negation.

Neglect-zero effects in BSML: possibility vs uncertainty

▶ More no-zero verifiers for *a* ∨ *b*:



▶ Two components of full ignorance ('speaker doesn't know which'):²

(15) It is raining or it is snowing $(\alpha \lor \beta) \rightsquigarrow$

- a. Uncertainty: $\neg \Box_e \alpha \land \neg \Box_e \beta$
- b. Possibility: $\diamond_e \alpha \land \diamond_e \beta$ (equiv $\neg \Box_e \neg \alpha \land \neg \Box_e \neg \beta$)
- Only possibility derived as neglect-zero effect:

$$\blacktriangleright \{w_{ab}, w_a\} \models \diamondsuit_e a \land \diamondsuit_e b, \text{ but } \not\models \neg \Box_e a \& \not\models \neg (a \land b)$$

• $\{w_{ab}, w_a\}$: a no-zero model supporting possibility but neither

<u>uncertainty nor scalar</u> implicature [no-zero non-scalar verifier]

 $^2 \text{Degano},$ Marty, Ramotowska, Aloni, Breheny, Romoli & Sudo. Presented at SuB & XPRAG 2023.

Two derivations of full ignorance

1. Neo-Gricean derivation [Sauerland 2004] (i) Uncertainty derived through quantity reasoning (16) $\alpha \lor \beta$ ASSERTION (17) $\neg \Box_e \alpha \wedge \neg \Box_e \beta$ UNCERTAINTY (from QUANTITY) (ii) Possibility derived from uncertainty and quality about assertion (18) $\Box_{e}(\alpha \lor \beta)$ QUALITY ABOUT ASSERTION (19) $\Rightarrow \diamond_e \alpha \land \diamond_e \beta$ POSSIBILITY 2. Nihil derivation (i) Possibility derived as neglect-zero effect (20) $\alpha \lor \beta$ ASSERTION (21) $\Diamond_{e} \alpha \land \Diamond_{e} \beta$ POSSIBILITY (from NEGLECT-ZERO) (ii) Uncertainty derived from possibility and scalar reasoning (22) $\neg(\alpha \land \beta)$ SCALAR IMPLICATURE (23) $\Rightarrow \neg \Box_e \alpha \land \neg \Box_e \beta$ UNCERTAINTY

Comparison with competing accounts

	Ignorance inference	FC inference	Scalar implicature
Neo-Gricean	reasoning	reasoning	reasoning
Grammatical view	debated	grammatical	grammatical
Nihil	neglect-zero	neglect-zero	—

- Ignorance: Neo-Gricean vs Nihil predictions
 - Neo-Gricean: No possibility without uncertainty
 - Nihil: Possibility derived independently from uncertainty

Argument 1 in favor of neglect-zero

- Experimental findings in agreement with Nihil predictions
 - [Degano et al, 2023]
 - Using adapted mystery box paradigm, compared conditions in which
 - both uncertainty and possibility are false [zero-model]
 - uncertainty false but possibility true [no-zero non-scalar model]
 - Less acceptance when possibility is false (95% vs 44%)
 - Evidence that possibility can arise without uncertainty
 - A challenge for the traditional implicature approach

Comparison with competing accounts

	Ignorance inference	FC inference	Scalar implicature
Neo-Gricean	reasoning	reasoning	reasoning
Grammatical view	debated	grammatical	grammatical
Nihil	neglect-zero	neglect-zero	—

Argument 2 in favor of neglect-zero

Cognitive plausibility: differences between FC and scalar implicatures [Chemla & Bott, 2014; Tieu et al, 2016]:

	processing cost	acquisition
FC inference	low	early
scalar implicature	high	late

- Possible explanation for neo-Gricean or grammatical view:
 - Scalar alternatives less accessible [Singh et al, 2016]
- Still low cost and early acquisition of FC
 - Hard to explain on neo-Gricean or grammatical view
 - Expected on neglect-zero hypothesis:
 - FC inference follows from the assumption that when interpreting sentences language users neglect zero-models
 - Zero-models neglected because cognitively taxing

	NS FC	Dual Prohib	Universal FC	Double Neg	WS FC
Neo-Gricean	yes	yes	no	?	no
Grammatical	yes	yes*	yes	no*	no*
Semantic	yes	no*	yes	no*	no
Neglect-zero	yes	yes	yes	yes	yes

Comparison with competing accounts of $\ensuremath{\operatorname{FC}}$ inference

Argument 3 in favor of neglect-zero hypothesis

Empirical coverage: FC sentences give rise to a complex pattern of inferences

$$\begin{array}{cccc} (24) & a. & \diamond(\alpha \lor \beta) \leadsto \diamond \alpha \land \diamond \beta & [Narrow \ Scope \ FC] \\ b. & \neg \diamond(\alpha \lor \beta) \leadsto \neg \diamond \alpha \land \neg \diamond \beta & [Dual \ Prohibition] \\ c. & \forall x \diamond (\alpha \lor \beta) \leadsto \forall x (\diamond \alpha \land \diamond \beta) & [Universal \ FC] \\ d. & \neg \neg \diamond (\alpha \lor \beta) \leadsto \diamond \alpha \land \diamond \beta & [Dual \ Narrow \ Scope \ FC] \\ e. & \diamond \alpha \lor \diamond \beta \rightsquigarrow \diamond \alpha \land \diamond \beta & [Wide \ Scope \ FC] \end{array}$$

- Captured by neglect-zero approach implemented in BSML³
- Most other approaches need additional assumptions

³MA (2022). Logic and conversation: the case of FC. Sem & Pra, 15(5).

The data

(25) Dual Prohibition

- [Alonso-Ovalle 2006, Marty et al. 2021]
- a. You are not allowed to eat the cake or the ice-cream. \rightsquigarrow You are not allowed to eat either one.

b.
$$\neg \diamondsuit (\alpha \lor \beta) \leadsto \neg \diamondsuit \alpha \land \neg \diamondsuit \beta$$

(26) Universal FC

[Chemla 2009]

- a. All of the boys may go to the beach or to the cinema. \rightsquigarrow All of the boys may go to the beach and all of the boys may go to the cinema.
- b. $\forall x \diamondsuit (\alpha \lor \beta) \rightsquigarrow \forall x (\diamondsuit \alpha \land \diamondsuit \beta)$
- (27) Double Negation FC

[Gotzner et al. 2020]

- a. Exactly one girl cannot take Spanish or Calculus. \rightsquigarrow One girl can take neither of the two and each of the others can choose between them.
- b. $\exists x (\neg \Diamond (\alpha(x) \lor \beta(x)) \land \forall y (y \neq x \to \neg \neg \Diamond (\alpha(y) \lor \beta(y)))) \\ \exists x (\neg \Diamond \alpha(x) \land \neg \Diamond \beta(x) \land \forall y (y \neq x \to (\Diamond \alpha(y) \land \Diamond \beta(y))))$

(28) Wide Scope FC

[Zimmermann 2000, Hoeks et al. 2017]

- a. Detectives may go by bus or they may go by boat. \rightsquigarrow Detectives may go by bus and may go by boat.
- b. Mr. X might be in Victoria or he might be in Brixton. \rightsquigarrow Mr. X might be in Victoria and might be in Brixton.
- c. $\Diamond \alpha \lor \Diamond \beta \rightsquigarrow \Diamond \alpha \land \Diamond \beta$

Bilateral State-Based Modal Logic (BSML) Language

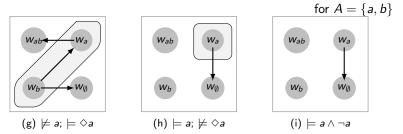
$$\phi \quad := \quad \pmb{p} \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \diamondsuit \phi \mid \text{NE}$$

where $p \in A$.

Models and States

- Classical Kripke models: $M = \langle W, R, V \rangle$
- States: $s \subseteq W$, sets of worlds in a Kripke model

Examples



BSML: definitions

$$[M = \langle W, R, V \rangle; s, t, t' \subseteq W]$$

$$\begin{array}{lll} M,s\models p & \text{iff} & \text{for all } w\in s:V(w,p)=1\\ M,s\models p & \text{iff} & \text{for all } w\in s:V(w,p)=0\\ M,s\models \neg\phi & \text{iff} & M,s\models\phi\\ M,s\models \neg\phi & \text{iff} & M,s\models\phi\\ M,s\models \phi\lor\psi & \text{iff} & \text{there are } t,t':t\cup t'=s\&M,t\models\phi\&M,t'\models\psi\\ M,s\models \phi\lor\psi & \text{iff} & M,s\models\phi\&M,s=\psi\\ M,s\models \phi\land\psi & \text{iff} & M,s\models\phi\&M,s\models\psi\\ M,s\models \phi\land\psi & \text{iff} & \text{there are } t,t':t\cup t'=s\&M,t\models\phi\&M,t'=\psi\\ M,s\models \diamond\land\psi & \text{iff} & \text{there are } t,t':t\cup t'=s\&M,t\models\phi\&M,t'=\psi\\ M,s\models \diamond\phi & \text{iff} & \text{for all } w\in s:\exists t\subseteq R[w]:t\neq\emptyset\&M,t\models\phi\\ M,s\models \otimes\phi & \text{iff} & \text{for all } w\in s:M,R[w]=\phi\\ M,s\models \text{NE} & \text{iff} & s=\emptyset\\ \end{array}$$

where $R[w] = \{v \in W \mid wRv\}$

BSML: definitions

Box

$$\blacktriangleright \ \Box \phi := \neg \Diamond \neg \phi$$

 $M, s \models \Box \phi \quad \text{iff} \quad \text{for all } w \in s : M, R[w] \models \phi$ $M, s \models \Box \phi \quad \text{iff} \quad \text{for all } w \in s : \text{there is a } t \subseteq R[w] : t \neq \emptyset \& M, t \models \phi$ where $R[w] = \{v \in W \mid wRv\}$

Logical consequence

 $\blacktriangleright \phi \models \psi \text{ iff for all } M, s : M, s \models \phi \ \Rightarrow \ M, s \models \psi$

Proof theory

See Anttila 2021; Anttila et al. 2022.

BSML: definitions

Pragmatic enrichment

For NE-free α , $[\alpha]^+$ defined as follows:

$$[\boldsymbol{p}]^{+} = \boldsymbol{p} \wedge \text{NE}$$

$$[\neg \alpha]^{+} = \neg [\alpha]^{+} \wedge \text{NE}$$

$$[\alpha \lor \beta]^{+} = ([\alpha]^{+} \lor [\beta]^{+}) \wedge \text{NE}$$

$$[\alpha \land \beta]^{+} = ([\alpha]^{+} \land [\beta]^{+}) \wedge \text{NE}$$

$$[\Diamond \alpha]^{+} = \Diamond [\alpha]^{+} \wedge \text{NE}$$

State-sensitive constraints on accessibility relation

- ► R is indisputable in (M, s) iff ∀w, v ∈ s : R[w] = R[v] → all worlds in s_M access exactly the same set of worlds
- ▶ *R* is state-based in (M, s) iff $\forall w \in s : R[w] = s$

 \mapsto all and only worlds in s_M are accessible within s_M Proposal: differences deontics vs epistemics captured by different properties of R:

- ▶ **epistemics** → state-based;
- ► **deontics** → sometimes indisputable

Neglect-zero effects in BSML: predictions

After pragmatic enrichment

- ▶ We derive both wide and narrow scope FC inferences:
 - Narrow scope FC: $[\diamondsuit(\alpha \lor \beta)]^+ \models \diamondsuit \alpha \land \diamondsuit \beta$
 - Universal FC: $[\forall x \diamond (\alpha \lor \beta)]^+ \models \forall x (\diamond \alpha \land \diamond \beta)$
 - Double negation FC: $[\neg \neg \diamondsuit(\alpha \lor \beta)]^+ \models \diamondsuit \alpha \land \diamondsuit \beta$
 - Wide scope FC: $[\Diamond \alpha \lor \Diamond \beta]^+ \models \Diamond \alpha \land \Diamond \beta$ (if *R* is indisputable)
- while no undesirable side effects obtain with other configurations:
 - ▶ Dual prohibition: $[\neg \diamondsuit(\alpha \lor \beta)]^+ \models \neg \diamondsuit \alpha \land \neg \diamondsuit \beta$

Before pragmatic enrichment

▶ The NE-free fragment of BSML is equivalent to classical modal logic:

$$\alpha \models_{BSML^{\emptyset}} \beta \text{ iff } \alpha \models_{CML} \beta \qquad [\alpha, \beta \text{ are NE-free}]$$

- But we can capture the infelicity of epistemic contradictions [Yalcin, 2007] by putting team-based constraints on the accessibility relation:
 - 1. Epistemic contradiction: $\Diamond \alpha \land \neg \alpha \models \bot$ (if *R* is state-based)
 - 2. Non-factivity: $\Diamond \alpha \not\models \alpha$

Information states vs possible worlds

► Failure of bivalence in BSML

 $M, s \not\models p \& M, s \not\models p$, for some info state s

Info states: less determinate than possible worlds

- just like truthmakers, situations, possibilities,
- ► Technically:
 - Truthmakers/possibilities: points in a partially ordered set
 - Info states: sets of possible worlds, also elements of a partially ordered set, the Boolean lattice Pow(W)
- Thus systems using these structures are closely connected, although might diverge in motivation:
 - Truthmaker & possibility semantics: description of ontological structures in the world
 - BSML & inquisitive semantics: explaining patterns in inferential & communicative human activities
- ► Next:
 - Comparison via translations in Modal Information Logic [vBenthem19]

Comparisons via translation

- Modal Information Logic (MIL) (van Benthem, 1989, 2019):⁴ common ground where related systems can be interpreted and their connections and differences can be explored
- ▶ Next: (simplified) translations into MIL of the following systems:
 - BSML
 - Truthmaker semantics (Fine)
 - Possibility semantics (Humberstone, Holliday)
 - Inquisitive semantics (Ciardelli, Groenendijk & Roelofsen)
 - (cf. Gödel's (1933) translation of intuitionistic logic into modal logic)
- Focus on propositional fragments (no modalities)
 - disjunction
 - negation
- (Based on work in progress with Søren B. Knudstorp, Nick Bezhanishvili, Johan van Benthem and Alexandru Baltag)

⁴Johan van Benthem (2019) Implicit and Explicit Stances in Logic, *Journal of Philosophical Logic*.

Modal Information Logic (MIL) Language

$$\phi \quad ::= \quad p \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \langle sup \rangle \phi \psi$$

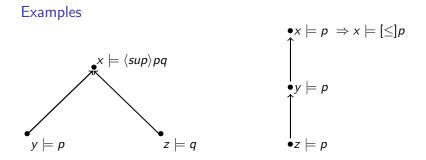
where $p \in A$.

Models and interpretation

Formulas are interpreted on triples $M = (X, \leq, V)$ where \leq is a partial order

$$\begin{array}{ll} \mathcal{M}, x \models p & \text{iff} & x \in V(p) \\ \mathcal{M}, x \models \neg \phi & \text{iff} & \mathcal{M}, x \not\models \phi \\ \mathcal{M}, x \models \phi \land \psi & \text{iff} & \mathcal{M}, x \models \phi \text{ and } \mathcal{M}, x \models \psi \\ \mathcal{M}, x \models \phi \lor \psi & \text{iff} & \mathcal{M}, x \models \phi \text{ or } \mathcal{M}, x \models \psi \\ \mathcal{M}, x \models \langle sup \rangle \phi \psi & \text{iff} & \text{there are } y, z : x = sup_{\leq}(y, z) \& \mathcal{M}, y \models \phi \& \mathcal{M}, z \models \psi \\ \hline [\leq] \phi = \neg \langle sup \rangle (\neg \varphi) \top \\ \mathcal{M}, x \models [\leq] \phi & \text{iff} & \text{for all } y : y \leq x \Rightarrow \mathcal{M}, y \models \phi \end{array}$$

Modal Information Logic (MIL)



Translations into Modal Information Logic

BSML (non-modal NE-free fragment): \leq is subset relation \subseteq

. . .

. . .

. . .

. . .

$$(\neg \phi)^{+} = (\phi)^{-}$$

$$(\neg \phi)^{-} = (\phi)^{+}$$

$$(\phi \lor \psi)^{+} = \langle sup \rangle (\phi)^{+} (\psi)^{+}$$

$$(\phi \lor \psi)^{-} = (\phi)^{-} \land (\psi)^{-}$$

$$(\phi \land \psi)^{+} = (\phi)^{+} \land (\psi)^{+}$$

$$(\phi \land \psi)^{-} = \langle sup \rangle (\phi)^{-} (\psi)^{-}$$

Further semantics (Fine): \leq is "part of" relation

$$(\neg \phi)^{+} = (\phi)^{-}$$

$$(\neg \phi)^{-} = (\phi)^{+}$$

$$(\phi \lor \psi)^{+} = (\phi)^{+} \lor (\psi)^{+}$$

$$(\phi \lor \psi)^{-} = \langle sup \rangle (\phi)^{-} (\psi)^{-}$$

$$(\phi \land \psi)^{+} = \langle sup \rangle (\phi)^{+} (\psi)^{+}$$

$$(\phi \land \psi)^{-} = (\phi)^{-} \lor (\psi)^{-}$$

Translations into Modal Information Logic

Possibility semantics (Humberstone, Holliday)

$$\begin{array}{lll} tr(\neg\phi) &=& [\leq]\neg tr(\phi) \\ tr(\phi \wedge \psi) &=& tr(\phi) \wedge tr(\psi) \\ tr(\phi \lor \psi) &=& [\leq] \langle \leq \rangle (tr(\phi) \lor tr(\psi)) \end{array}$$

Inquisitive semantics (Groenendijk, Roelofsen and Ciardelli)

:

$$\begin{array}{l} \vdots \\ tr(\neg\phi) &= [\leq]\neg tr(\phi) \\ tr(\phi \land \psi) &= tr(\phi) \land tr(\psi) \\ tr(\phi \lor \psi) &= tr(\phi) \lor tr(\psi) \end{array}$$

.

Disjunction and Negation

- Three notions of disjunction expressible in MIL:
 - Boolean disjunction: φ ∨ ψ [classical logic, intuitionistic logic, inquisitive logic]
 - Lifted/split disjunction: (sup)φψ
 [BSML, dependence logic, team semantics]
 - Cofinal disjunction: [co](φ ∨ ψ)
 [possibility semantics, dynamic semantics]
- Three notions of negation:
 - Boolean negation: ¬φ [classical logic, ...]
 - Bilateral negation: (¬φ)⁺ = (φ)[−] & (¬φ)[−] = (φ)⁺ [truthmaker semantics, BSML, ...]
 - ► Intuitionistic-like negation: [≤]¬φ [possibility semantics, inquisitive semantics, intuitionistic logic]

Some combinations:

- ▶ Boolean disjunction + boolean negation \mapsto classical logic
- Boolean notions in other combinations can generate non-classicality:
 - Boolean disjunction + intuitionistic negation \mapsto intuitionistic logic
- Classicality also generated by non-boolean combinations:
 - Split disjunction + bilateral negation (classical fragm. BSML)

(where $[co]\phi =: [\leq]\langle \leq \rangle \phi$)

Conclusions

- ▶ Free choice and ignorance: a mismatch between logic and language
- Grice's insight:
 - stronger meanings can be derived paying more "attention to the nature and importance to the conditions governing conversation"
- Standard implementation: two separate components
 - Semantics: classical logic
 - Pragmatics: Gricean reasoning

Elegant picture, but, when applied to ${\rm FC}$ & ignorance inferences, empirically inadequate

▶ My proposal: FC and ignorance as neglect-zero effects

Literal meanings (NE-free fragment) + pragmatic factors (NE) \Rightarrow FC & possibility inferences

- Implementation in BSML (a team-based modal logic)
- Differences but also interesting connections with related systems
- MIL useful framework for comparisons via translations

Collaborators & related (future) research

Logic

Proof theory (Anttila, Yang, Knudstorp); expressive completeness (Anttila, Knudstorp); bimodal perspective (Knudstorp, Baltag, van Benthem, Bezhanishvili); qBSML (van Ormondt); BiUS & qBiUS (MA); typed BSML (Muskens); Aristotelian logic in qBSML \rightarrow (MA);...

Language

FC cancellations (<u>Pinton, Hui</u>); modified numerals (<u>vOrmondt</u>); attitude verbs (<u>Yan</u>); conditionals (<u>Flachs</u>); questions (<u>Klochowicz</u>); quantifiers (<u>Klochowicz</u>, Bott, Schlotterbeck); indefinites (<u>Degano</u>); homogeneity (<u>Sbardolini</u>); experiments (<u>Degano</u>, Klochowicz, Ramotowska, Bott, Schlotterbeck, Marty, Breheny, Romoli, Sudo); ...

THANK YOU!5

 $^{^5 \}rm This$ work was supported by (i) Nothing is Logical (NihiL), an NWO OC project (grant no 406.21.CTW.023) and (ii) PLEXUS, (Grant Agreement no 101086295) a Marie Sklodowska-Curie action funded by the EU under the Horizon Europe Research and Innovation Programme.