BSML

Disjunction

Quantifiers

Conclusions

NØthing is Logical

Maria Aloni ILLC & Philosophy University of Amsterdam M.D.Aloni@uva.nl

Slides: https://www.marialoni.org/resources/BielefeldMay25.pdf

Linguistics Colloquium Bielefeld, 14 May 2025

NØthing is logical (Nihil)

- Goal of the project: a formal account of a class of natural language inferences which deviate from classical logic
- Common assumption: these deviations are not logical mistakes, but consequence of pragmatic enrichments (Grice)
- Strategy: develop *logics of conversation* which model next to literal meanings also pragmatic factors and the additional inferences which arise from their interaction
- Novel hypothesis: **neglect-zero** tendency (a cognitive bias rather than a conversational principle) as crucial factor
- Main conclusion: deviations from classical logic consequence of pragmatic enrichments albeit not (always) of the canonical Gricean kind

garden or in the attic \rightsquigarrow speaker doesn't know when ren. [Grice 1989, p.4]	
ignorance inferences are conversational	

 Less consensus on FC inferences analysed as conversational implicatures; grammatical scalar implicatures; semantic entailments;

Non-classical inferences

Free choice (FC)

- (1) $\Diamond (\alpha \lor \beta) \rightsquigarrow \Diamond \alpha \land \Diamond \beta$
- (2) Deontic FC inference
 - You may go to the beach or to the cinema. а.
 - b. \sim You may go to the beach and you may go to the cinema.
- (3) Epistemic FC inference
 - Mr. X might be in Victoria or in Brixton. а.
 - b. \sim Mr. X might be in Victoria and he might be in Brixton.

Ignorance

- (4) The prize is either in the g
- (5) ? I have two or three childr

In the standard approach,

implicatures

Neglect-zero

[Kamp 1973]

[Zimmermann 2000]

Neg	lect-zero	
-----	-----------	--

Quantifiers

Novel hypothesis: neglect-zero

- FC and ignorance inferences are \neq semantic entailments $[\neq \text{conversational implicatures}]$
 - Not the result of Gricean reasoning
 - Not the effect of applications of covert grammatical operators

```
\neq grammatical (scalar) implicatures
```

 But rather a consequence of something else speakers do in conversation, namely,

NEGLECT-ZERO

when interpreting a sentence speakers create structures representing reality¹ and in doing so they systematically neglect structures which verify the sentence by virtue of an empty configuration (*zero-models*)

 Tendency to neglect zero-models follows from the difficulty of the cognitive operation of evaluating truths with respect to empty witness sets [Nieder 2016; Bott et al, 2019²]

¹Johnson-Laird (1983) Mental Models. Cambridge University Press.

²Bott, O., Schlotterbeck, F. & Klein U. 2019. Empty-set effects in guantifier interpretation. Journal of Semantics, 36, 99-163.

Novel hypothesis: neglect-zero

Illustration

- (6) Less than three squares are black.
 - a. Verifier: [■, □, ■]
 - b. Falsifier: [■, ■, ■]
 - c. Zero-models: $[\Box, \Box, \Box]; [\blacksquare, \blacksquare, \blacksquare]; [\Delta, \Delta, \Delta]; [\blacktriangle, \blacktriangle, \blacktriangle]; \dots$

Zero-models in (6-c) verify the sentence by virtue of an empty set of black squares

- Cognitive difficulty of zero-models confirmed by experimental findings and connected to / argued to explain:
 - the special status of 0 among the natural numbers [Nieder, 2016]
 - why downward-monotonic quantifiers are more costly to process than upward-monotonic ones (*less* vs *more*) [Bott *et al*, 2019]
- · Core idea of Nihil project: tendency to neglect zero-models explains
 - FC, ignorance and related inferences [MA, 2022]
 - (7) a. You may do A or B \sim You may do A and you may do B
 - b. A or B \rightsquigarrow speaker doesn't know which
 - Principles operative in Aristotelian logics [MA, 2023; MA & vOrmondt 2023]

(8)	a.	every A is $B \rightsquigarrow$ some A is B	[existential import]
. ,	b.	NEVER: if not A, then A	[Aristotle's Theses]
		NEVER: if A, then not A	

Novel hypothesis: neglect-zero effects on disjunction

Illustrations

- (9) It is raining.
 - a. Verifier: [/////////]
 - b. Falsifier: [华华埣]
 - c. Zero-models: none
- (10) It is snowing.
 - a. Verifier: [*****]
 - b. Falsifier: [^{读-读-读}]; [*/// //////*];
 - c. Zero-models: none
- (11) It is raining or snowing.

 - b. Falsifier: [☆☆☆]
 - c. Zero-models: [////////]; [♥♥♥♥]
 - Split state in (11-a): simultaneously entertains different (possibly conflicting) alternatives;
 - Two zero-models (11-c): verify the sentence by virtue of an empty witness for one of the disjuncts;
 - Core idea: ignorance effects arise because such zero-models are cognitively taxing and therefore disregarded.

⇐ "split" state

⇐ "split" state

A new conjecture: no-split

A closer look at the disjunctive case

- (12) It is raining or snowing.
 - a. Verifier: [///////// | ****]
 - b. Falsifier: [☆☆☆]
 - c. Zero-models: [////////]; [****]
 - [////////]; [巻巻巻]
 - Split states: multiple alternatives processed in a parallel fashion → also a cognitively taxing operation (increasing working memory load)

NO-SPLIT CONJECTURE [Klochowicz, Sbardolini & MA 2025] the ability to split states (entertain multiple alternatives) is developed late

- Combination of neglect-zero + no-split can explain non-classical inferences observed in pre-school children [Singh et al 2016; Cochard 2023; Bleotu et al 2024]
 - (13) The boy is holding an apple or a banana = The boy is holding an apple and a banana $(\alpha \lor \beta) \equiv (\alpha \land \beta)$
 - (14) The boy is not holding an apple or a banana = The boy is neither holding an apple nor a banana $\neg(\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta$
 - (15) Liz can buy a croissant or a donut = Liz can buy a croissant and a donut $\diamond(\alpha \lor \beta) \equiv \diamond(\alpha \land \beta)$

Free choice, ignorance, conjunctive or and scalar implicatures

• Scalar implicatures compatible with FC and ignorance (but not with conj or):

(16)	Pat may eat the cake or the ice-cream $\mapsto \diamondsuit(lpha \lor eta)$	\sim
	a. Pat may choose which $\mapsto \Diamond \alpha \land \Diamond \beta$ b. Pat may not eat both $\mapsto \neg \Diamond (\alpha \land \beta)$ c. Pat may eat both $\mapsto \Diamond (\alpha \land \beta)$	(free choice) (scalar implicature) (conjunctive <i>or</i>)
(17)	Pat ate the cake or the ice-cream $\mapsto (lpha \lor eta)$	\sim
	a. Speaker doesn't know which b. Pat didn't eat both $\mapsto \neg(\alpha \land \beta)$ c. Pat ate both $\mapsto (\alpha \land \beta)$	(ignorance) (scalar implicature) (conjunctive <i>or</i>)

- Ignorance and free choice are incompatible
 - (18) Pat may eat the cake or the ice-cream, I don't know which \checkmark Pat may choose which (free choice cancellation)

Comparison with competing $\operatorname{accounts}^3$

	Ignorance inference	FC inference	Scalar implicature	Conjunctive or
Neo-Gricean	reasoning	reasoning	reasoning	
Grammatical view	debated	grammatical	grammatical	grammatical
Nihil	neglect-zero	neglect-zero	_	negl-z + no-split

Experiments

- Degano et al 2025: Neo-Gricean vs Nihil on ignorance inference
- Bott, Klochowicz, et al (24, 25): Nihil vs competitors on disjunction & quantifiers

³Neo-Gricean: Horn, Soames, Sauerland, ... Grammatical view: Chierchia, Fox, Singh et al, ... 8/25

Modelling cognitive biases in a team semantics

• Natural language sentences translated into formulas of a classical logical language interpreted in a team semantics where we can model biases

Team semantics

- Formulas interpreted wrt a set of points of evaluation (a team) rather than single ones [Hodges 1997; Väänänen 2007]
 - Classical modal logic:

$$[M = (W, R, V)]$$

$$M, w \models \phi$$
, where $w \in W$

• Team-based modal logic:

$$M, t \models \phi$$
, where $t \subseteq W$

- Two crucial features
 - The empty set is among the possible teams: $\emptyset \subseteq W$
 - Multi-membered teams can model split states

Neglect-zero & no-split bias

- Neglect-zero modelled via non-emptiness atom ${\rm N}{\rm E}$ which disallows empty teams as possible verifiers

$$M, t \models \text{NE} \text{ iff } t \neq \emptyset$$

 $\bullet\,$ No-split modelled via flattening operator F which induces pointwise evaluations and therefore avoids simultaneous processing of alternatives

$$M, t \models F\phi$$
 iff for all $w \in t : M, \{w\} \models \phi$

BSML: Classical Modal Logic + NE

Language

 $\phi := \mathbf{p} \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \diamondsuit \phi \mid \mathsf{NE}$

Bilateral team semantics

Given a Kripke model $M = \langle W, R, V \rangle$ & states $s, t, t' \subseteq W$

 $M, s \models p$ iff for all $w \in s : V(w, p) = 1$ M, s = p iff for all $w \in s : V(w, p) = 0$ Wb $M, s \models \neg \phi$ iff $M, s = \phi$ $M, s = \neg \phi$ iff $M, s \models \phi$ $M. s \models \phi \lor \psi$ iff there are $t, t': t \cup t' = s \& M, t \models \phi \& M, t' \models \psi$ $M, s = \phi \lor \psi$ iff $M, s = \phi \& M, s = \psi$ $M, s \models \phi \& M, s \models \psi$ $M. s \models \phi \land \psi$ iff there are $t, t': t \cup t' = s \& M, t = \phi \& M, t' = \psi$ $M, s = \phi \wedge \psi$ iff $M, s \models \Diamond \phi$ iff for all $w \in s$: $\exists t \subseteq R[w]$: $t \neq \emptyset \& M, t \models \phi$ $M, s = \diamond \phi$ for all $w \in s : M, R[w] = \phi$ iff $M, s \models \text{NE}$ iff $s \neq \emptyset$ [where $R[w] = \{v \in W \mid wRv\}$] M, s = NEiff $s = \emptyset$

Entailment: $\phi_1, \ldots, \phi_n \models \psi$ iff for all $M, s: M, s \models \phi_1, \ldots, M, s \models \phi_n \Rightarrow M, s \models \psi$ Proof Theory: See Anttila, MA, Yang, *Notre Dame J For Log* (2024).

Illustrations $\{w_{ab}, w_b\} \not\models a; \{w_{ab}, w_b\} \models b; \{w_{\emptyset}\} \not\models a; \{w_{\emptyset}\} \not\models b; \emptyset \models a; \emptyset \models b$

BSML

Disjunction

Conclusions

Neglect-zero effects in BSML: split disjunction

 A state s supports a disjunction (α ∨ β) iff s is the union of two substates, each supporting one of the disjuncts

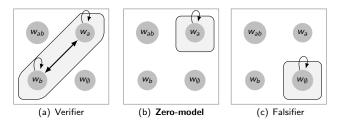


Figure: Models for $(a \lor b)$.

- $\{w_a\}$ verifies $(a \lor b)$ by virtue of an empty witness for the second disjunct, $\{w_a\} = \{w_a\} \cup \emptyset \& M, \emptyset \models b$ [\mapsto zero-model]
- Main idea: define neglect-zero enrichments, []⁺, whose core effect is to rule out such zero-models
- Implementation: []⁺ defined using NE (s ⊨ NE iff s ≠ Ø), which models neglect-zero in the logic

BSML

Disjunction

Quantifiers

Conclusions

BSML: neglect-zero enrichment

Non-emptiness

 $\ensuremath{\operatorname{NE}}$ is supported in a state if and only if the state is not empty

$$M, s \models \text{NE} \quad \text{iff} \quad s \neq \emptyset$$
$$M, s \models \text{NE} \quad \text{iff} \quad s = \emptyset$$

Neglect-zero enrichment

For NE-free α , $[\alpha]^+$ defined as follows:

$$\begin{aligned} [p]^+ &= p \land \text{NE} \\ [\neg\alpha]^+ &= \neg[\alpha]^+ \land \text{NE} \\ [\alpha \lor \beta]^+ &= ([\alpha]^+ \lor [\beta]^+) \land \text{NE} \\ [\alpha \land \beta]^+ &= ([\alpha]^+ \land [\beta]^+) \land \text{NE} \\ [\Diamond \alpha]^+ &= \Diamond [\alpha]^+ \land \text{NE} \end{aligned}$$

[]+ enriches formulas with the requirement to satisfy $\ensuremath{\operatorname{NE}}$ distributed along each of their subformulas

BSML

Disjunction

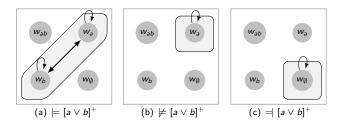
Quantifier

Conclusions

Neglect-zero effects in BSML: enriched disjunction

 s supports an enriched disjunction [α ∨ β]⁺ iff s is the union of two non-empty substates, each supporting one of the disjuncts

 $[\alpha \lor \beta]^+ = (\alpha \land \text{NE}) \lor (\beta \land \text{NE}) \land \text{NE}$



• An enriched disjunction requires both disjuncts to be live possibilities

(19) It is raining or snowing \rightsquigarrow_{nz} It might be raining and it might be snowing $[\alpha \lor \beta]^+ \models \diamondsuit_e \alpha \land \diamondsuit_e \beta$ (where *R* is state-based)

Formal characterization of neglect-zero effects $\alpha \rightsquigarrow_{nz} \beta$ (β is a neglect-zero effect of α) iff $\alpha \not\models \beta$ but $[\alpha]^+ \models \beta$

Neglect-zero effects in BSML: main results

- In BSML []⁺-enrichment has non-trivial effect only when applied to $positive \mbox{ disjunctions}^4$
 - \mapsto we derive $_{\rm FC}$ and related effects (for enriched formulas);
 - \mapsto []+-enrichment vacuous under single negation.

After enrichment

- We derive both wide and narrow scope FC inferences:
 - Narrow scope FC: $[\diamondsuit(\alpha \lor \beta)]^+ \models \diamondsuit \alpha \land \diamondsuit \beta$
 - Universal FC: $[\forall x \diamond (\alpha \lor \beta)]^+ \models \forall x (\diamond \alpha \land \diamond \beta)$
 - Double negation FC: $[\neg \neg \diamond(\alpha \lor \beta)]^+ \models \diamond \alpha \land \diamond \beta$
 - Wide scope FC: $[\Diamond \alpha \lor \Diamond \beta]^+ \models \Diamond \alpha \land \Diamond \beta$

- (if R is indisputable)
- while no undesirable side effects obtain with other configurations:
 - Dual prohibition: $[\neg \diamondsuit(\alpha \lor \beta)]^+ \models \neg \diamondsuit \alpha \land \neg \diamondsuit \beta$

Before enrichment

• The NE-free fragment of BSML is equivalent to classical modal logic (ML): $\alpha \models_{BSML} \beta$ iff $\alpha \models_{ML} \beta$ [if α, β are NE-free]

 $[\text{if } \alpha \text{ is NE-free: } M, s \models \alpha \text{ iff for all } w \in s : M, \{w\} \models \alpha]$

• But we can capture the infelicity of epistemic contradictions [Yalcin, 2007] by putting team-based constraints on the accessibility relation:

1 Epistemic contradiction: $\Diamond \alpha \land \neg \alpha \models \bot$ (if *R* is state-based) **2** Non-factivity: $\Diamond \alpha \not\models \alpha$

 4 MA (2022) Logic and Conversation: the case of free choice. Semantics and Pragmatics 15(5). $^{14/25}$

Formal characterization zero and no-zero models

- (M, s) is a zero-model for α iff $M, s \models \alpha$, but $M, s \not\models [\alpha]^+$
- (M, s) is a no-zero verifier for α iff $M, s \models [\alpha]^+$

Many no-zero verifiers for enriched disjunction

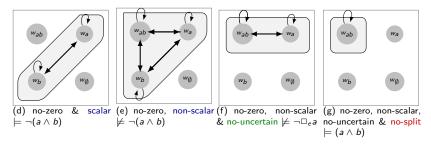


Figure: Models for enriched $[a \lor b]^+$.

- Neglect-zero enrichment does not derive scalar implicatures;
- ❷ Neglect-zero enrichment neither derives no-uncertain inferences → in contrast to standard neo-Gricean approach to ignorance
- 8 No-split verifiers compatible with neglect-zero enrichments
 - No-split conjecture: only no-split verifiers accessible to 'conjunctive' pre-school children. [Klochowicz, Sbardolini, MA]

 \leftarrow

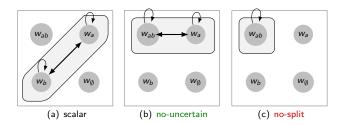
N	6		ec	÷	-	-		
1.	IC	gı	ec	L-	~	C	1	

BSML

Disjunction

Neglect-zero effects in BSML: possibility vs uncertainty

• More no-zero verifiers for *a* ∨ *b*:



- Two components of full ignorance ('speaker doesn't know which'):⁵
 - (20) It is raining or it is snowing $(\alpha \lor \beta) \rightsquigarrow$

a. Uncertainty:
$$\neg \Box_e \alpha \land \neg \Box_e \beta$$

- b. Possibility: $\diamond_e \alpha \land \diamond_e \beta$ (equiv $\neg \Box_e \neg \alpha \land \neg \Box_e \neg \beta$)
- Fact: Only possibility derived as neglect-zero effect:

•
$$[a \lor b]^+ \models \diamond_e a \land \diamond_e b$$
, but $[a \lor b]^+ \not\models \neg \Box_e a \land \neg \Box_e b$ (*R* is state-based)

•
$$\{w_{ab}, w_a\} \models [a \lor b]^+$$
, but $\not\models \neg \Box_e a$

• $\{w_{ab}\} \models [a \lor b]^+$, but $\not\models \neg \Box_e a; \not\models \neg \Box_e b$

⁵Degano, Marty, Ramotowska, MA, Breheny, Romoli, Sudo. *Nat Lang Sem*, 2025.

Two derivations of full ignorance

Standard neo-Gricean derivation

[Sauerland 2004]

- (i) Uncertainty derived through quantity reasoning
- (21) $\alpha \lor \beta$ ASSERTION (22) $\neg \Box_e \alpha \land \neg \Box_e \beta$ UNCERTAINTY (from QUANTITY)
- (ii) Possibility derived from uncertainty and quality about assertion
- (23) $\Box_e(\alpha \lor \beta)$ QUALITY ABOUT ASSERTION
- (24) $\Rightarrow \diamond_e \alpha \land \diamond_e \beta$ POSSIBILITY
- Ø Neglect-zero derivation
 - (i) Possibility derived as neglect-zero effect
 - (25) $\alpha \lor \beta$ Assertion
 - (26) $\diamond_e \alpha \land \diamond_e \beta$ POSSIBILITY (from NEGLECT-ZERO)

(ii) Uncertainty derived from possibility and scalar reasoning

(27) $\neg(\alpha \land \beta)$ SCALAR IMPLICATURE (28) $\Rightarrow \neg \Box_e \alpha \land \neg \Box_e \beta$ UNCERTAINTY

Neo-Gricean vs neglect-zero explanation

Contrasting predictions of competing accounts of ignorance

- Neo-Gricean: No possibility without uncertainty
- Neglect-zero: Possibility derived independently from uncertainty

Experimental findings

- Using adapted mystery box paradigm, compared conditions in which
 - both uncertainty and possibility are false
 - uncertainty false but possibility true
- Less acceptance when possibility is false (95% vs 44%)
- \Rightarrow Evidence that possibility can arise without uncertainty
- A challenge for the traditional neo-Gricean approach

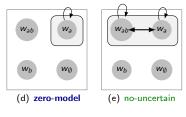


Figure: Models for $(a \lor b)$

[Degano et al 2025]

[zero-model]

[no-zero, no-uncertain model]

Neglect-zero effects on quantifiers

- So far focus on disjunction (propositional BSML)
- NEXT: neglect-zero effects on quantifiers (first order $qBSML^{\rightarrow})^6$
- Same methodology (summarized below) but now we work with a first order language and teams are defined as sets of world-assignment pairs

Summary neglect-zero effects in team semantics

- Natural language sentences translated into formulas α of a classical logical language
- Logical language interpreted in a team semantics where we can model neglect-zero (via NE)
 - α : literal meaning $\quad [\alpha]^+$: neglect-zero enriched meaning
- Formal characterisation of zero-models and neglect-zero effects:
 - A zero-model for α is one which verifies α but does not verify $[\alpha]^+$

(M, t) zero-model for α iff $M, t \models \alpha$ but $M, t \not\models [\alpha]^+$

• β is a neglect-zero effect of α iff β follows only if we rule out possible zero-models of α :

$$\alpha \leadsto_{\mathit{nz}} \beta \text{ iff } \alpha \not\models \beta \text{ but } [\alpha]^+ \models \beta$$

⁶MA & vOrmondt, Modified numerals and split disjunction. J of Log Lang and Inf (2023)

BSML

Disjunction

Quantifiers

Neglect-zero effects on quantifiers

Predictions of qBSML $^{\rightarrow}$

(29)	Less than three squares are black $\mapsto \forall xyz((Sx))$	$\wedge Bx \wedge \dots) \rightarrow (x = y \vee \dots))$
	a. Verifier: [■,□,■]	
	b. Falsifier: [■, ■, ■]	there are block anyone
	c. Zero-models: $[\Box, \Box, \Box]; [\blacktriangle, \bigstar, \blacktriangle]; \ldots$	\rightsquigarrow_{nz} there are black squares
(30)	Every square is black.	$\mapsto \forall x (Sx \to Bx)$
	a. Verifier: [■, ■, ■]	
	b. Falsifier: [■,□,■]	
	c. Zero-models: $[\triangle, \triangle, \triangle]$; $[\blacktriangle, \blacktriangle, \blacktriangle]$;	\rightsquigarrow_{nz} there are squares
(31)	No squares are black.	$\mapsto \forall x (Sx \to \neg Bx)$
	a. Verifier: $[\Box, \Box, \Box]$	
	b. Falsifier: [■,□,□]	
	c. Zero-models: $[\triangle, \triangle, \triangle]$; $[\blacktriangle, \blacktriangle, \blacktriangle]$;	\rightsquigarrow_{nz} there are squares
(32)	Every square is red or white.	$\mapsto \forall x(Sx \to (Rx \lor Wx))$
	a. Verifier: [■, □, ■]	
	b. Falsifier: [■, □, ■]	
	c. Zero-models: $[\blacksquare, \blacksquare, \blacksquare]; [\Box, \Box, \Box]; \ldots \rightsquigarrow_{nz}$	there are white & red squares

These predictions tested in Bott, Klochowicz, Schlotterbeck et al (2024, 2025)

Experimenting with quantifiers and disjunction

Four non-classical interpretations

- (33) a. Some of the squares are black \Rightarrow not all of the squares are black [UB]
 - b. Each square is red or white \Rightarrow there are white squares and red squares [DIST]
 - c. Less than 3 squares are black \Rightarrow there are some black squares [ES-scope]
 - d. Less than 3/every/no squares are black \Rightarrow there are some squares [ES-restrictor]

Three competing accounts

	UB	DIST	ES-scope	ES-restrictor
Alternative-based	implicature	implicature	implicature	implicature
Bott et al, 2019	_	—	neglect-zero	presupposition
Nihil	—	neglect-zero	neglect-zero	neglect-zero

Two experiments

- Exp 1: Answering questions about the emptyset (Bott et al, SuB 2024)
- Exp 2: Priming with zero-models (Klochowicz et al, CogSci 2025)

Three main conclusions

- Clear evidence that ES-restrictor is a presupposition (Exp 1)
- e Evidence that UB differs from both ES-scope and DIST (Exp1 and Exp2)
- Some evidence that ES-scope and DIST involve the same cognitive process (Exp 2)

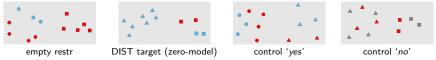
Experimenting with quantifiers and disjunction

Non-classical interpretations

- $(34) \qquad \text{a.} \qquad \text{Some of the squares are black} \Rightarrow \text{not all of the squares are black} \qquad \qquad [UB]$
 - b. Each square is red or white \Rightarrow there are white squares and red squares [DIST]
 - c. Less than 3 squares are black \Rightarrow there are some black squares [ES-scope]
 - d. Less than 3/every/no squares are black \Rightarrow there are some squares [ES-restrictor]

Exp1: Bott et al, SuB 2024

- Question-answer task:
 - (35) Ist jedes Dreieck entweder rot oder blau? Ja/Nein/Komische Frage (Is every triangle either red or blue?) Yes/No/Odd question



- Main results:
 - Evidence that ES-restrictor is a presupposition: questions in empty restrictor models uniformly perceived as odd
 - ② ES-scope (37%) and DIST (23%) unaffected by question environment; UB much less available (10%, while 40% when unembedded)
 - 3 Inconclusive evidence on whether ES-scope and DIST had the same source

Experimenting with quantifiers and disjunction

Non-classical interpretations

- (36) a. Some of the squares are black \Rightarrow not all of the squares are black [UB]
 - b. Each square is red or white \Rightarrow there are white and red squares
 - c. At most 2 squares are black \Rightarrow there are some black squares
 - d. Less than 3 squares are black \Rightarrow there are some black squares [I

[DIST] [ES-scope, sup]

[ES-scope, comp]

Three competing accounts

	UB	DIST	ES-scope	ES-restrictor
Alternative-based	implicature	implicature	implicature	implicature
Bott et al 2019	_	_	neglect-zero	presupposition
Nihil	—	neglect-zero	neglect-zero	neglect-zero

Exp2: Klochowicz, Schlotterbeck et al, CogSci 2025, SuB 2025

- Tested whether frequency of strengthening in (36-d) changed after participants were primed to suspend other strengthenings in (36-a-c).
- Results:
 - 1 Semantic priming between DIST and ES-scope
 - 2 No priming between UB and ES-scope
 - O No trial-to-trial priming from ES-scope (sup) to ES-scope (com) but spill-over and adaptation effects

Conclusions

- FC, ignorance, ES-scope: a mismatch between logic and language
- Grice's insight:
 - stronger meanings can be derived paying more "attention to the nature and importance to the conditions governing conversation"
- Nihil proposal: non-classical inferences consequences of cognitive biases
 - FC, ES-scope and related inferences as neglect-zero effects

Literal meanings (classical fragment) + cognitive factor (NE) \Rightarrow FC, possibility, ES-scope, DIST, etc

• Conjunctive *or* as no-zero + no-split effect

Literal meanings (classical fragment) + cognitive factors (NE, F) \Rightarrow conjunctive or

- Implementation in (extensions of) BSML, a team-based modal logic
- Experiments provided some evidence in agreement with the neglect-zero hypothesis, but some inconclusive results:
 - EEG & eye-tracking experiment (Ramatowska *et al*);
 - Working memory and neglect-zero (double-task exp) (Ramatowska and MA)
- More experiments needed
 - Acquisition of zero (Ramatowska *et al*)
 - . . .

BSML

Disjunction

Quantifier

Conclusions

Collaborators & related (future) research

Logic

Proof theory (<u>Anttila, Yang</u>); expressive completeness (<u>Anttila, Knudstorp</u>); bimodal perspective (<u>Knudstorp, Baltag, van</u> <u>Benthem, Bezhanishvili</u>); qBSML (<u>van Ormondt</u>); BiUS & qBiUS (<u>MA</u>); typed BSML (<u>Muskens</u>); connexive logic (Knudstorp, Ziegler & MA);...

Language

FC cancellations (<u>Pinton, Hui</u>); modified numerals (<u>vOrmondt</u>); attitude verbs (<u>Yan</u>); conditionals (<u>Flachs, Ziegler</u>); questions (<u>Klochowicz</u>); quantifiers (<u>Klochowicz, Bott, Schlotterbeck</u>); indefinites (<u>Degano</u>); homogeneity (<u>Sbardolini</u>); acquisition (<u>Klochowicz, Sbardolini</u>); experiments (<u>Degano, Klochowicz, Ramotowska, Bott, Schlotterbeck</u>, <u>Marty, Breheny, Romoli, Sudo, Szymanik, Visser</u>); ...

THANK YOU!⁷

⁷This work was supported by NWO OC project *Nothing is Logical* (grant no 406.21.CTW.023).